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Abstract

Given a discrete lattice, Γ < SLm(R), and a base point o ∈ Rm, let NΓ(T ) denote
the number of points in the orbit o · Γ whose (Euclidean) length is bounded by
a growing parameter, T . We demonstrate an abstract spectral method capable of
obtaining strong asymptotic estimates for NΓ(T ) without relying on the meromorphic
continuation of higher rank Langlands Eisenstein series.

1 Introduction

In this paper, we study the general orbital counting problem in real space, by which we

mean the following. Fix m ≥ 2 and a base point o ∈ Rm, and let Γ < G := SLm(R) be

a discrete lattice such that the orbit O := o · Γ ⊂ Rm is discrete and infinite. Then the

orbital counting problem is to obtain sharp asymptotic estimates for

NΓ(T ) := #{z ∈ O : ‖z‖ ≤ T}, (1.1)

where ‖z‖2 := z2
1 + · · ·+ z2

m (or another archimedean norm).

By standard Tauberian arguments, the asymptotic expansion of NΓ(T ) is closely related

to the meromorphic continuation of a mirabolic-type Eisenstein (or Poincaré) series:

EΓ : Rm × C 3 (p, s) 7→ EΓ(p, s) :=
∑

γ∈ΓH\Γ

1

‖pγ‖s
,

which converges in some half-plane <(s) � 1. Being a Dirichlet series with non-negative

coefficients, this EΓ(p, ·) has some abscissa of convergence δ ≥ 0, from which it is not

difficult to conclude the crude estimate that

NΓ(T ) = T δ+o(1),

as T → ∞. Since Γ is a lattice, this exponent δ = m. One can say more using spectral

theory, as follows.
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The norm ‖ · ‖ on Rn is invariant under a maximal compact subgroup K ∼= SO(m),

and the locally symmetric space X := Γ\G/K is endowed with a Riemannian metric

corresponding to the Killing form on the Lie algebra of G; let ∆ denote the Laplace operator

(quadratic Casimir) on X; see §2.3 for details and normalization. Then the spectrum of ∆

below 1 consists of finitely many “exceptional” eigenvalues

0 ≤ λ0 < λ1 ≤ · · · ≤ λk < 1.

Our normalization of the Laplace operator is such that the tempered spectrum starts at

1. Further, let si be the positive root si = m
√
λi. Using either homogeneous dynamics or

the meromorphic continuation of mirabolic Eisenstein series, it is more or less standard to

prove a result of the following form.

Theorem 1. There exist constants c0 > 0, c1, . . . , ck and ηm > 0 such that

NΓ(T ) = c0T
m + c1T

(m−s1) + · · ·+ ckT
(m−sk) +O(Tm−ηm). (1.2)

Our goal in this paper is to demonstrate a soft abstract spectral-theoretic technique

in higher rank by giving a novel proof of Theorem 1. (For a rank-one instance of this

technique, see [KL22].) While this method does not recover the same exponent as the

explicit spectral method of meromorphic continuation of higher-rank Eisenstein series, it

avoids the technicalities thereof, while producing error exponents that are stronger than

those obtained from more traditional homogeneous dynamics approaches. The latter have

proven much more flexible in situations where an explicit spectral decomposition is not

readily available.

Using homogeneous dynamics to attack such orbital counting problems is well studied

in the literature, see, e.g., Margulis [Mar04], Duke-Rudnick-Sarnak [DRS93], and Eskin-

McMullen [EM93]. A typical strategy is as follows. Writing H = StabG(o) for the stabilizer

of o in G, let

χT (g) = 1‖og‖<T

be the indicator function of the count in question. This is a function on H\G/K, that is, it

is left-invariant by the stabilizer subgroup, and right-invariant under the maximal compact

K, since the norm ‖ · ‖ is (bi-)K-invariant. We then create the automorphic function:

FT (g) =
∑

γ∈ΓH\Γ

χT (γg),

where ΓH := Γ ∩ H is the stabilizer of o in Γ; the assumed discreteness of the orbit O
implies that ΓH is a lattice in H. Then FT (e) is exactly the count NΓ(T ). To approximate

NΓ(T ), we smooth FT (e) as follows. Noting that FT takes values in Γ\G/K, we fix a bump
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function Ψ on Γ\G/K; then FT (e) is approximated by

Ñ(T ) =

∫
Γ\G/K

Ψ(g)FT (g)dg.

Unfolding, and writing an Iwasawa-type decomposition G = HAK, leads to:

Ñ(T ) =

∫
A

1‖oa‖<T

[∫
ΓH\H

Ψ(ha)dh

]
da

The bracketed term is the expansion by a ∈ A of the finite H-volume quotient ΓH\H,

and is typically analyzed by a second smoothing process, namely, thickening and applying a

wavefront-type lemma. There is significant loss in this analysis from this second smoothing,

and this is what we are able to avoid here.

Our method is based on a technique using abstract spectral theory. In our application,

the bracketed function, extended to G, that is, the map

g 7→
∫

ΓH\H
Ψ(hg)dh

is a function on the double-coset H\G/K, which is one-dimensional (just a function of a

one-parameter a ∈ A). Then if Ψ were an eigenfunction of the quadratic Casimir operator

(the others, it turns out, need not enter the analysis!), it would satisfy a quadratic ODE

which can be solved explicitly. This observation, together with L2-techniques developed

by the authors in [Kon09, KL22, Lut22], can be turned into a proof. The main technical

innovation in this paper is an analysis of the Lie algebra structure, explicit Casimir operator,

and Haar measure resulting from the choice of parametrization of the group suitable for

our application. The key calculation is that, in our H ×A×KH\K coordinates (see (2.1)

and Theorem 2), the Haar measure on G decomposes as dg = dh da dk, in which dh is Haar

measure on H. This fact is crucial for the analysis carried out in §3.1.

Remark. In smooth form (see Theorem 4 below), our error term exhibits square-root can-

cellation, that is, has size Tm/2, which is optimal in the sense that it reaches the tempered

spectrum.

Remark. Our proof of Theorem 1 produces the error exponent:

ηm =
2m

(m+ 2)(m− 1) + 4
. (1.3)

For example η2 = 1/2, η3 = 3/7, η4 = 4/11, η5 = 5/16, and η6 = 3/11. In the special case

that Γ = SLm(Z) and o = em = (0, . . . , 0, 1), this problem amounts to counting primitive

lattice points in the T -ball. That is, let r∗m(n) denote the number of ways to express an
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integer, n, as the sum of m squares which share no common factor,

r∗m(n) := #{a ∈ Zm : ‖a‖2 = n with (a1, . . . , am) = 1},

where ‖ · ‖ denotes the Euclidean norm. A classic problem is to obtain an asymptotic

formula for the number

Nm(T ) :=
T 2∑
n=1

r∗m(n).

The main term is known to be cmT
m, where cm = 1/ζ(m) [Chr56], however finding optimal

estimates for the error term is a challenging problem. When m = 2 the best known error

term is due to Wu [Wu02] (assuming the Riemann hypothesis) who shows that η2 <
387
304
≈

1.273 . . . . For m = 3 the best known result is that of Goldfeld-Hoffstein [GH85] that

η3 < 39/32 ≈ 1.219 . . . , which follows from the fact that N3 can be related to the first

moment of the quadratic Dirichlet L-function L(1
2
, χ8d) (similar estimates were achieved by

Young [You09] in the smooth case). For m ≥ 4, one can use Möbius inversion to compare

the primitive lattice point count to the Gauss circle problem. Then one can easily show

that the asymptotic estimate above holds for any value of ηm < 1. All of these results are

much stronger that what one can achieve in the generality of Theorem 1, and are possible

due to the explicit nature of the lattice SLm(Z).

1.1 Plan of paper

In Section 2, we present some preliminaries in Lie algebras, groups, and decompositions

thereof, along with the main Structure Theorem (see Theorem 2) for the Haar measure and

Casimir operator in these coordinates. Finally, in Section 3, we prove Theorem 1.

2 Preliminaries

Without loss of generality (conjugating Γ), we can choose our base point to be o = em :=

(0, . . . , 0, 1) ∈ Rm. Let

G := SLm(R) :=


g =



x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

x(m−1)1 x(m−1)2 . . . x(m−1)m

a1 a2 . . . am


: det g = 1


,
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with coordinates as specified. Further let H := StabG(o) = {g ∈ G : emg = em}; then

H ∼= ASLm−1(R), or more explicitly,

H = {g ∈ G : a1 = · · · = am−1 = 0 , am = 1} .

Now fix Γ and let ΓH := Γ∩H. By the assumed discreteness of the orbit O, the stabilizer

ΓH is a lattice in H. Then our count can be expressed as

NΓ(T ) := #{γ ∈ ΓH\Γ : a2
1 + · · ·+ a2

m ≤ T 2}.

2.1 Group decomposition for m = 3

For the reader’s benefit, we first express everything completely explicitly in the case m = 3.

Let g := sl3(R) be the Lie algebra associated to G. It is convenient to decompose g

according to the following basis:

XH,1 :=

 1

 , XH,2 :=

 1
 , XH,3 :=

 1
 ,

XH,4 :=

1

−1

 , XH,5 :=

 1

−1

 ,

XA :=

−1/2

−1/2
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XK,1 :=

 1

−1

 , XK,2 :=

 1

−1

 .

The basis elements XH,i generate h = Lie(H), and we denote their matrix exponentials by

n1(x1) = exp(x1XH,1), n2(x2), n3(x3), aH(t), kH(θ) respectively. We denote the exponential

of XA by ã(t) = exp(XAt). Rather than work with the t variable, we prefer to work with

r = et > 0; thus we set

a(r) := ã(log r) =

r
−1/2

r−1/2

r

 .
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Finally XK,1 and XK,2 correspond to two rotations, and we denote their exponentials by

k1(θ1) = exp(θ1XK,1) and similarly for k2(θ2). Thus, given a g ∈ G, we can write

g = nH(x)aH(t)kH(θ)a(r)k1(θ1)k2(θ2),

where nH(x) = n1(x1)n2(x2)n3(x3). Note that a(r) commutes with kH(θ), and if we move

kH to the right, then kHk1k2 generate SO(3).

2.2 Group decomposition for general m

In general, we parametrize G = SLm(R) via the map

H × A×KH\K → G,

where A is a one-parameter diagonal group, and KH = K ∩ H ∼= SO(m − 1) (note that

this subgroup commutes with A). We furthermore decompose H in standard Iwasawa

coordinates,

H = NH × AH ×KH ,

leading to the G-coordinate system:

NH × AH ×KH × A×KH\K → G.

More explicitly, we decompose G into: H ∼= ASLm−1(R) × a one-parameter diagonal

subgroup × a product of (m− 1) one-parameter rotations. That is, we again let

a(r) = diag(r−1/(m−1), . . . , r−1/(m−1), r).

Let XK,i be the element of the Lie algebra with (XK,i)mi = −(XK,i)im = 1 for i = 1, . . . ,m−
1, and let ki(θi) = exp(θiXK,i). Then in a neighborhood of the identity in G, we can write

g ∈ G as

g = ha(r)k1(θ1) · · · km−1(θm−1), (2.1)

for some h ∈ H, r > 0, and θi ∈ [0, 2π). We denote by k(θ) := k1(θ1) · · · km−1(θm−1),

corresponding to a choice of Euler coordinates on the sphere KH\K ∼= Sm−1.

We further decompose H into a product of an upper triangular matrix nH(x), where

x has dimension m(m−1)
2
× a diagonal matrix aH(t) (of dimension m− 2) × an element of

KH
∼= SO(m− 1) that we denote kH(ϕ) (of dimension (m−1)(m−2)

2
). Thus we write

g = nH(x)aH(t)kH(ϕ)a(r)k(θ). (2.2)

Crucially, note that kH commutes with a(r). This allows us to multiply together the
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aH and a(r) matrices and change coordinates to the more standard Iwasawa coordinates

(see [Gol06]) where the Haar measure and Casimir operator are known, resulting in the

following.

Theorem 2 (Structure Theorem of the Haar measure and Casimir operator). The Haar

measure on G in the coordinates of (2.2) is given by dg = dh da dk, or more explicitly:

dg = (ρ1(x, t,ϕ)dxdtdϕ)
(
rm−1dr

)
(ρ2(θ)dθ) , (2.3)

where ρ1 is the Haar measure density on ASLm−1(R) and ρ2 is bounded. Meanwhile the

quadratic Casimir operator, acting on left-H-invariant and right-K-invariant functions

f(r) = f(ha(r)k), is given in these coordinates by

∆f(r) =
4

m2
(r2∂rr + r∂r)f(r). (2.4)

Proof. The Haar measure is well-known in standard Iwasawa coordinates, see, e.g. [Gol06,

Theorem 1.6.1]. Thus to prove (2.3), all that is needed is a change of coordinates and an

inductive argument.

As for the Casimir operator, let XH,1, . . . , XH,(m−1)m be a basis for h, let XA be the Lie

element diag( 1
m−1

, . . . , 1
m−1

, 1), and let XK,1, . . . , XK,m−1 be the basis elements correspond-

ing to ki.

The quadratic Casimir operator (as an element of the universal enveloping algebra of

g) is then given by:

∆ =

(m−1)m∑
i=1

X∗H,iXH,i +X∗AXA +
m−1∑
i=1

X∗K,iXK,i,

where X∗ is the dual element (that is B(Xi, X
∗
j ) = δi,j where B is the Killing form). Each

basis element, X corresponds to a differential operator given by

DXf(g) =
d

dt
f(g exp(tX))

∣∣∣∣
t=0

.

Using the fact that a(r) commutes with the almost all of H, one can show that the only

contribution to the Casimir (when acting on H-invariant function) is given by X∗AXA =

cmX
2
A, for some constant cm. Note that for the differential operator XA, we can use

the method in [BKS10, Proof of Lemma 2.7] (also used in [KL22, Proof of Theorem 8])

to compute XA. The normalization can be derived by acting on the I function [Gol06,

Definition 2.4.1] and matching eigenvalues.
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2.3 Decomposition of L2(Γ\G/K) into irreducibles and the spec-

tral theorem

The Riemannian metric on the locally symmetric space Γ\G/K has an associated Laplace-

Beltrami operator. With respect to the right-regular representation of G on L2(Γ\G),

the quadratic Casimir operator ∆ agrees on the subspace H := L2(Γ\G/K) of right K-

invariant functions, with the Laplacian. This operator, ∆, is positive and self-adjoint, and

thus its spectrum lies in R≥0. We have the following abstract spectral theorem (see e.g.,

[Rud73, Ch. 13])

Theorem 3 (Abstract Spectral Theorem). There exists a spectral measure µ̂ on R≥0 and

a unitary spectral operator ̂ : H → L2([0,∞), dµ̂) such that:

i) Abstract Parseval’s Identity: for φ1, φ2 ∈H

〈φ1, φ2〉H = 〈φ̂1, φ̂2〉L2([0,∞),dµ̂), (2.5)

and

ii) The spectral operator is diagonal with respect to L: for φ ∈H and λ ≥ 0,

L̂φ(λ) = λφ̂(λ). (2.6)

Moreover, if λ is in the point specturm of L with associated eigenspace Hλ, then for

any ψ1, ψ2 ∈H one has

ψ̂1(λ)̂̄ψ2(λ) = 〈ProjHλ
ψ1,ProjHλ

ψ2〉, (2.7)

where Proj refers to the projection to the subspace Hλ. In the special case that Hλ is

one-dimensional and spanned by the normalized eigenfunction φλ, we have that

ψ̂1(λ)̂̄ψ2(λ) = 〈ψ1, φλ〉〈φλ, ψ2〉. (2.8)

The group G acts by right regular representation on H . The Hilbert space H decom-

poses into components as follows

H = H0 ⊕H1 ⊕ · · · ⊕Hk ⊕H tempered

where Hi is a finite dimensional eigenspace with ∆-eigenvalue λi and H tempered denotes

the tempered spectrum.
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3 Proof of Theorem 1

We follow the standard procedure described in the introduction of smoothing the counting

function, as follows. Let

χT (g) := 1‖emg‖<T =

1 if r ≤ T

0 otherwise,

where g is decomposed as above into g = nHaHkHa(r)k. Let

FT (g) =
∑

γ∈ΓH\Γ

χT (γg),

whence NΓ(T ) = FT (e).

For ε > 0, choose a smooth, nonnegative, right-K-invariant bump function ψ = ψε

supported in an ε-neighborhood of the identity coset of G/K, with
∫
G/K

ψ = 1, so that,

for any γ ∈ Γ, ∫
G/K

χT (γg)ψ(g)dg =

1 if ‖emγ‖ < T (1− cε)

0 if ‖emγ‖ > T (1 + cε).
(3.1)

Since G/K ∼= NH × AH × A has dimension:

m(m− 1)

2
+ (m− 2) + 1 =

(m+ 2)(m− 1)

2
,

such a ψ can be constructed with

‖ψ‖L2(G/K) � ε−
(m+2)(m−1)

4 .

Let Ψ = Ψε ∈ L2(Γ\G/K) denote the Γ-average of ψε

Ψ(g) :=
∑
γ∈Γ

ψ(γg).

It follows that

‖Ψ‖L2(Γ\G/K) � ε−
(m+2)(m−1)

4 . (3.2)

Then our smoothed count is given by

Ñ(T ) := 〈FT ,Ψ〉L2(Γ\G/K).

For this smooth count, we have the following asymptotic.

Theorem 4. For any Γ < SLm(Z) of finite co-volume we have

Ñ(T ) = c0(ε)Tm + c1(ε)Tm−s1 + · · ·+ ck(ε)T
m−sk +O(ε−(m+2)(m−1)/4Tm/2), (3.3)
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where for any i = 1, . . . , k we have that ci(ε) = Ci(1 + O(ε)), where Ci are independent of

ε.

Proof of Theorem 1 from Theorem 4. This argument is standard. After unfolding both FT

and Ψ, we have that:

Ñ(T ) =
∑

γ∈ΓH\Γ

∫
G/K

χT (γg)ψε(g)dg.

It now follows from (3.1) that

Ñ(T (1− cε)) ≤ NΓ(T ) ≤ Ñ(T (1 + cε)).

From here, we optimize the parameter ε by choosing ε = T
−2m

(m+2)(m−1)+4 ; this leads to Theo-

rem 1 with the error term claimed in (1.3).

The remainder of the paper is devoted to the proof of Theorem 4.

3.1 Unfolding and the differential equation

By unfolding, using the decomposition g = ha(r)k, and the calculation of Haar measure in

(2.3), our smooth count becomes

Ñ(T ) =

∫
Γ\G/K

∑
γ∈ΓH\Γ

χT (γg)Ψ(g)dg

=

∫
ΓH\G/K

χT (g)Ψ(g)dg

=

∫ ∞
0

χT (r)rm−1

(∫
ΓH\H

Ψ(ha(r))dh

)
dr,

since Ψ is right K-invariant. Let f(r) :=
∫

ΓH\H
Ψ(ha(r))dh denote the quantity inside the

brackets.

Then using Theorem 2 we know that, for any value of λ, f satisfies the differential

equation (
4

m2
(r2∂rr + r∂r)− λ

)
f(r) = g(r) (3.4)

with

g(r) :=

∫
ΓH\H

(∆− λ)Ψ(ha(r))dh.

For λ 6= 0, the homogeneous case (g ≡ 0) in (3.4) has two solutions, namely f±(r) =
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A± r
m−1±s, for some constants A±; here we have written λ = 4

m2 s
2 with s > 0. Write

α±(T ) :=

∫ ∞
0

χT (r)rm−1±sdr

=
1

m± s
Tm±s.

Using the same proof in [Kon09, Proof of Lemma 3.3], we can thus write

Ñ(T ) = A+α+(T ) + A−α−(T ) +O(‖(∆− λ)Ψ‖). (3.5)

However, note that we can trivially bound Ñ(T ) � Tm, hence A+ = 0. Thus we can in

fact write

Ñ(T ) = Aα(T ) +O(‖(∆− λ)Ψ‖), (3.6)

where α(T ) = α−(T ) and A = A−. Hence we can solve for A and write

Ñ(T ) = KT (λ)Ñ(1) +O(‖(∆− λ)Ψ‖). (3.7)

with KT (λ) = α(T )
α(1)

. The following theorem states that, since (3.7) holds for any Ψ and any

λ, we can in fact show that the error vanishes. Since the proof is identical to the proof

of [Kon09, Proposition 3.5] we omit it. Note that we can create an operator KT (∆) via a

power series expansion of KT .

Theorem 5 (Main Identity). For T large enough we have

FT (g) = KT (∆)F1(g) (3.8)

almost everywhere. Moreover

KT (λ) =

cTm−s if s < m/2

cTm/2 if s = m/2 + it.
(3.9)

3.2 Proof of Theorem 4

With the main identity at hand, we can proceed with the proof of Theorem 4. By Parseval’s

identity (2.5)

Ñ(T ) = 〈FT ,Ψ〉Γ
= 〈F̂T , Ψ̂〉Spec(Γ)

= F̂T (λ0)Ψ̂(λ0) + F̂T (λ1)Ψ̂(λ1) + · · ·+ F̂T (λk)Ψ̂(λk)

+

∫
Stemp

F̂T (λ)Ψ̂(λ)dµ̂(λ).
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Now for each point in the “exceptional” spectrum, Ψ̂(λi) is the projection onto the ith

eigenspace, which is finite dimensional. Thus

Ψ̂(λi) = 〈Ψ, φi〉,

and by the mean value theorem, we have that

Ψ̂(λi) = Ci +O(ε).

Moreover using (3.9), we have that

F̂T (λi) = Tm−si〈F1, φi〉,

= ciT
m−si ,

for some constants ci.

As for the error term, we can use (2.6) and (3.9) to achieve the following bound∫
Stemp

F̂T (λ)Ψ̂(λ)dµ̂(λ) =

∫
Stemp

̂KT (∆)FT (λ)Ψ̂(λ)dµ̂(λ)

=

∫
Stemp

KT (λ)F̂1(λ)Ψ̂(λ)dµ̂(λ)

� Tm/2
∫
Stemp

F̂1(λ)Ψ̂(λ)dµ̂(λ).

From here we again apply Parseval’s identity and Cauchy-Schwarz yielding∫
Stemp

F̂1(λ)Ψ̂(λ)dµ̂(λ)� Tm/2‖F1‖‖Ψ‖.

Since Γ\G has finite volume and F1 is bounded, the L2 norm of F1 is bounded. The proof

follows on using (3.2).
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