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Abstract. Given a real semisimple connected Lie group G and a discrete torsion-free
subgroup Γ < G we prove a precise connection between growth rates of the group Γ,
polyhedral bounds on the joint spectrum of the ring of invariant differential operators, and
the decay of matrix coefficients. In particular, this allows us to completely characterize
temperedness of L2(Γ\G) in this general setting.

1. Introduction

Consider a locally symmetric space Γ\G/K, where G is a real connected semisimple
non-compact Lie group with finite center, K is a maximal compact subgroup, and Γ < G
is a discrete torsion-free subgroup. There is a general scheme to connect the spectral
properties of Γ\G/K with growth rates of the discrete group Γ. One of the first instances
of this connection is the characterization of the bottom inf σ(∆) of the Laplace spectrum
for hyperbolic surfaces:

inf σ(∆) =

{
1/4 : δΓ < 1/2

1/4− (δΓ − 1/2)2 : δΓ ≥ 1/2,

where δΓ is the critical exponent of the discrete subgroup Γ ≤ SL2(R)

δΓ := inf

s ∈ R :
∑
γ∈Γ

e−sd(γx0,x0) <∞

 , x0 ∈ H.

This theorem is due to Elstrodt [Els73a, Els73b, Els74] and Patterson [Pat76] and has
been extended to real hyperbolic manifolds of arbitrary dimension by Sullivan [Sul87] and
then to general locally symmetric spaces of rank one by Corlette [Cor90].

We are interested in analogous statements for higher rank locally symmetric spaces. An
important feature is the following: G admits a Cartan decomposition G = K exp(a+)K.
Hence, for every g ∈ G there is µ+(g) ∈ a+ such that g ∈ K exp(µ+(g))K. µ(g) can be
thought of a higher dimensional distance d(gK, eK).

In this higher rank setting the bottom of the Laplace spectrum was estimated using the
same definition of δΓ which is defined through d(γx0, x0) = ‖µ+(x−1

0 γx0)‖ [Web08, Leu04].
Later, Anker and Zhang [AZ22] (see also [CP04]) proved the exact formula

inf σ(∆) =

{
‖ρ‖2 : δ̃Γ < ‖ρ‖
‖ρ‖2 − (δ̃Γ − ‖ρ‖)2 : δ̃Γ ≥ ‖ρ‖,
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where ρ is the usual half sum of restricted roots and δ̃Γ is the modified critical exponent
which is defined through ‖µ+(γ)‖ and 〈ρ, µ+(γ)〉 and therefore also takes the direction and
not only the size of µ+(γ) into account.

This concept can be further extended through the definition of the growth indicator
function ψΓ : a→ R ∪ {−∞} introduced by Quint [Qui02]:

ψΓ(H) := ‖H‖ inf
H∈C

inf{s ∈ R |
∑

γ∈Γ,µ+(γ)∈C

e−s‖µ+(γ)‖ <∞},

where the infimum runs over all open cones C ⊆ a with H ∈ C. It has been shown in [WZ23]
that

inf σ(∆) = ‖ρ‖2 − max

{
0, sup

H∈ a+

ψΓ(H)− 〈ρ,H〉
‖H‖

}2

.

In the rank one case an immediate consequence of the above described relations is that
the representation L2(Γ\G) is tempered if and only if δΓ ≤ 1/2. This follows, because in
rank one all non-tempered representations occurring in L2(Γ\G) lead to Laplace eigenvalues
strictly smaller than ‖ρ‖. The latter argument breaks down completely in higher rank, as
there are known examples of non-tempered representations that lead to arbitrary high
Laplace eigenvalues. Thus the question of temperedness of L2(Γ\G) remained completely
open until the recent breakthrough of Edwards and Oh who proved the following theorem,
based on previously obtained mixing results for Anosov subgroups [ELO23]:

Theorem 1 ([EO23, Theorem 1.6]).

(i) If L2(Γ\G) is tempered then ψΓ ≤ ρ.
(ii) Assume that Γ is a Zariski dense image of an Anosov representation with respect to

the minimal parabolic subgroup. Then ψΓ ≤ ρ implies that L2(Γ\G) is tempered.

A consequence of the main result in the present paper is that this result holds for general
discrete subgroups Γ < G (see Corollary 3). We can deduce this result from a general
polyhedral bound on the joint spectrum σ̃ ⊆ a∗C/W of the algebra of invariant differential
operators on G/K (see Section 2.3 for a precise definition).

The temperedness of L2(Γ\G) is equivalent to σ̃ ⊆ ia∗ and in general <σ̃ ⊆ conv(Wρ),
where conv(Wρ) is the polyhedron described by the convex hull of the Weyl orbit of ρ. Our
main theorem states (in part) that bounding the growth indicator function ψΓ by dilates
of the linear functional ρ is equivalent to bounding <σ̃ in a dilation of the polyhedron
conv(Wρ):

Theorem 2. Let G be a real semisimple connected non-compact Lie group with finite center
and Γ < G a discrete and torsion-free subgroup. Then for all p ∈ 2N the following statements
are equivalent:

(i) <σ̃ ⊆ (1− 2p−1) conv(Wρ).
(ii) For all ε > 0, there is dε > 0 such that for all f1, f2 ∈ L2(Γ\G)K :

|〈(exp v)f1, f2〉| ≤ dεeε‖v‖e−2p−1ρ(v)‖f1‖‖f2‖.

(iii) ψΓ ≤ (2− 2p−1)ρ.
(iv) L2(Γ\G) is almost Lp (see Section 2.2 for a definition).

With

(v) inf σ(∆) ≥ 2p−1(2− 2p−1)‖ρ‖2.
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we have the following implications between the above statements for p ∈ [2,∞):

(i)⇐⇒ (ii) =⇒ (iii) =⇒ (iv), (v).

A direct consequence of taking p = 2 and [WZ23, Cor. 1.2] is:

Corollary 3. Let G be a real semisimple connected non-compact Lie group with finite center
and Γ < G a discrete and torsion-free subgroup, then the following statements are equivalent:

(i) σ̃ ⊆ ia∗.
(ii) For all ε > 0, there is dε > 0 such that for all f1, f2 ∈ L2(Γ\G)K :

|〈(exp v)f1, f2〉| ≤ dεeε‖v‖e−ρ(v)‖f1‖‖f2‖.
(iii) ψΓ ≤ ρ.
(iv) L2(Γ\G) is almost L2.
(v) inf σ(∆) = ‖ρ‖2.

(vi) L2(Γ\G) is tempered.

Strategy of proof. The key step in our proof is that we can derive a precise relation
between the decay of matrix coefficients for functions f1, f2 ∈ Cc(Γ\G) and the growth
indicator function ψΓ (Theorem 10). We can then link these decay estimates to the joint
spectrum by the abstract Plancherel formula and the asymptotic analysis of spherical func-
tions.

Related results. In a previous work, the latter two named authors [WW23] had obtained
bounds on the joint spectrum by counting of Γ points in the case where G is a product of
rank one groups and Γ < G a general discrete, torsion free subgroup. In particular, they
obtained Theorem 1 in this case. The methods in [WW23] however were based on analyzing
the resolvent kernels on the individual rank one factors.

Temperedness in the complementary setting of homogeneous spaces G/H for a closed
subgroup H with finitely many connected components has been studied by Benoist and
Kobayashi in a series of papers [BK15, BK22, BK21, BK23]. They prove that the regular
representation of G on L2(G/H) is tempered if and only if a growth condition on H is
satisfied that is similar to (iii). They also prove a version alike Theorem 2 where they
characterize when L2(G/H) is almost Lp for p ∈ 2N.

Acknowledgements: We thank Valentin Blomer for his suggestion to study this ques-
tion and for numerous stimulating discussions. We furthermore thank Samuel Edwards,
Joachim Hilgert, and Alex Gorodnik for discussions and advice to the literature. This work
has received funding from the Deutsche Forschungsgemeinschaft (DFG) Grant No. SFB-
TRR 358/1 2023 - 491392403 (CRC “Integral Structures in Geometry and Representation
Theory”).

2. Preliminaries

2.1. Notation. In this article G is a real semisimple connected non-compact Lie group
with finite center and K is a maximal compact subgroup of G. We fix an Iwasawa decom-
position G = KAN and define M as the centralizer of A in K. Furthermore, let N be
the nilpotent subgroup such that KAN is the opposite Iwasawa decomposition. We denote
by g, k, a, n,m, n the corresponding Lie algebras. For g ∈ G let H(g) ∈ a be the logarithm
of the A-component in the Iwasawa decomposition. Let Σ ⊆ a∗ be the root system of
restricted roots, Σ+ the positive system corresponding to the Iwasawa decomposition, and
W the corresponding Weyl group acting on a∗. As usual, for α ∈ Σ, we denote by mα the
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dimension of the root space, and by ρ the half sum of restricted roots counted with multi-
plicity. Let a+ = {H ∈ a | α(H) > 0 ∀α ∈ Σ} the positive Weyl chamber, a+ its closure,
and a∗+ the corresponding cone in a∗ via the identification a↔ a∗ through the Killing form
〈·, ·〉. We have the Cartan decomposition G = K exp(a+)K and for g ∈ G there is a unique
µ+(g) ∈ a+ such that g ∈ K exp(µ+(g))K. For the Cartan decomposition the following
integral formula holds (see [Hel84, Thm. I.5.8]):

(2.1)

∫
G
f(g) dg =

∫
K

∫
a+

∫
K
f(k exp(H)k′)δ(H) dk dH dk′

where δ(H) =
∏
α∈Σ+(sinh(α(H))mα . Note that δ(H) ≤ e2ρ(H). We fix a discrete subgroup

Γ ≤ G.

2.2. Temperedness and almost Lp. Recall the following definitions. Denote by Ξ the
Harish-Chandra function Ξ(g) =

∫
K e
−ρ(H(gk)) dk where H : G → a is defined by g ∈

KeH(g)N . It is well-known that Ξ is a smooth bi-K-invariant function of G with values in
(0, 1]. Furthermore, there is a constant C such that

e−ρ(H) ≤ Ξ(eH) ≤ C(1 + |H|)de−ρ(H)

for H ∈ a+. Here d is the number of positive reduced roots. Note that by (2.1) this implies
that Ξ ∈ L2+ε(G) for every ε > 0.

Definition 2.1 ([Oh02, Def. 2.3 and 2.4]). (i) A representation π of G is called tem-
pered if for any K-finite unit vectors v and w,

|〈π(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2 Ξ(g)

for any g ∈ G, where 〈Kv〉 denotes the subspace spanned by Kv.
(ii) A representation π of G is called strongly Lp+ε or almost Lp if there is a dense

subset V of the Hilbert space attached to π such that for any v, w ∈ V , the matrix
coefficient g 7→ 〈π(g)v, w〉 lies in Lq(G) for all q > p.

Note that if π is strongly Lp+ε, then π is also strongly Lq+ε for any q ≥ p since any
matrix coefficients are bounded. We have the following theorem relating the two concepts.

Theorem 4 ([Oh02, Thm. 2.4]). A representation π is tempered if and only if it is strongly
L2+ε.

Since we’re not only interested in temperedness, being strongly Lp+ε gives us a measure
for the extent of the non-tempered part. However, the connection to uniform pointwise
bounds seems to be established only for p ∈ 2N:

Theorem 5 ([Oh02, Thm. 2.5]). If π is a unitary representation without a non-zero in-
variant vector that is strongly L2k+ε, k ∈ N, then for any K-finite unit vectors v and w,

|〈π(g)v, w〉| ≤ (dim〈Kv〉 dim〈Kw〉)1/2 Ξ1/k(g).

Clearly, since Ξ is L2+ε the opposite implication holds as well.
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2.3. Spherical dual and joint spectrum. Assume that the unitary representation R on
L2(Γ\G) by right multiplication is decomposed into a direct integral of irreducible repre-
sentations

π '
∫ ⊕
X
πx dµ(x)

where (X,µ) is a measure space and πx are irreducible unitary representations. We should

think of X as the Cartesian product of the unitary dual Ĝ and a multiplicity space.
The joint spectrum can be defined as follows.

Definition 2.2. [[WW23, Prop. 3.6]]

(2.2) σ̃ := supp(ϕ∗µ) ∩ Ĝsph ⊆ Ĝsph,

where ϕ : X → Ĝ is the map x 7→ πx and Ĝsph is the spherical dual of G, i.e. the set of
equivalence classes of irreducible unitary representations containing a non-zero K-invariant
vector.

In the following we describe how Ĝsph can be parametrized by subset of a∗C/W (see [Hel84,

Thm. IV.3.7]). For π ∈ Ĝsph let vK be a normalized K-invariant vector. Then the function
φ : G → C, φ(g) = 〈π(g)vK , vK〉 is bi-K-invariant and positive definite, i.e. the matrix
(φ(x−1

i xj))ij is positive semidefinite for any choice of finitely many xi ∈ G. Furthermore, φ is
an eigenvector for each element in the algebra D(G/K) of G-invariant differential operators

on G/K. Therefore, φ is an elementary spherical function φλ(g) =
∫
K e
−(λ+ρ)H(g−1k) dk for

λ ∈ a∗C. Note that φλ = φµ if and only if Wλ = Wµ. It can be shown that the mapping

π 7→ Wλ is a bijection of Ĝsph onto the set {λ ∈ a∗C/W | φλ is positive definite}. We
identify the two sets and write πλ for the representation corresponding to λ ∈ a∗C/W with

φλ positive definite. In particular, for λ ∈ Ĝsph we have 〈πλ(g)v, w〉 = φλ(g)〈v, w〉 if v, w
are K-invariant.

Every positive definite function on G is bounded by its value at 1 and therefore Ĝsph ⊆
conv(Wρ) + ia∗ by [Hel84, Thm. IV.8.1]. Here conv(Wρ) is the convex hull of the Weyl
orbit Wρ of ρ which can be characterized by

conv(Wρ) = {λ ∈ a∗ | λ(wH) ≤ ρ(H) ∀H ∈ a+, w ∈W}.
L2(Γ\G) is tempered if and only if σ̃ ⊆ ia∗ (see Lemma 9 below) and the intermediate cases
will be covered by the least p ∈ [2,∞] such that <σ̃ ⊆ (1− 2p−1) conv(Wρ).

3. Decay of coefficients in the L2 sense

In this section we prove series of lemmas that connect the decay of coefficient in the L2

sense with the growth indicator function ψΓ as well as the joint spectrum. We start with a
slight modification of [LO23, Prop. 7.3].

Lemma 6. Suppose that there exists a homogeneous function θ : a+ → R such that for any
ε > 0 there is dε > 0 such that for any K-invariant functions f, g ∈ L2(Γ\G)K , any v ∈ a+,

|〈R(exp v)f, g〉| ≤ dεe−θ(v)eε‖v‖‖f‖2‖g‖2.
Then this implies

ψΓ ≤ 2ρ− θ.

Note that it is enough to have the assumption for f, g ∈ Cc(Γ\G)K since Cc is dense in
L2.
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Proof. The proof is the same as [LO23, Prop. 7.3] except that one obtains

#(Γ ∩BT ) ≤ Ce(T+ε)((2ρ−θ)u+ε‖u‖)+2(T+ε)η.

Therefore,

lim sup
T→∞

1

T
log #(Γ ∩BT ) ≤ (2ρ− θ)(u) + ε‖u‖+ 2η.

This implies ψΓ(u) ≤ (2ρ− θ)(u) + ε‖u‖ and the lemma by letting ε→ 0. �

We now prove that the assumption of Lemma 6 is satisfied by a homogeneous functional
θ defined via the joint spectrum.

Lemma 7. For all ε > 0, there is dε > 0 such that for all f, g ∈ L2(Γ\G)K we have

〈R(exp v)f, g〉 ≤ dεesupλ∈σ̃(<λ−ρ)(v)eε‖v‖‖f‖2‖g‖2.

Proof. We decompose f, g ∈ L2(Γ\G)K into
∫ ⊕
X fx dµ(x) and

∫ ⊕
X gx dµ(x), respectively,

according to the decomposition L2(Γ\G) '
∫ ⊕
X πx dµ(x). Since f and g are K-invariant fx

and gx are contained in πKx for almost every x ∈ X and hence they vanish for almost every

x ∈ X with πx /∈ Ĝsph. We calculate

〈R(exp v)f, g〉 =

∫
X
〈πx(exp v)fx, gx〉 dµ(x) =

∫
ϕ−1(Ĝsph)

〈πx(exp v)fx, gx〉 dµ(x).

We recall that if λ ∈ a∗C/W corresponds to πλ ∈ Ĝsph we have

〈πλ(g)vK , vK〉 = φλ(g)〈vK , vK〉
for vK ∈ πKλ . Therefore,

〈R(exp v)f, g〉 =

∫
ϕ−1(Ĝsph)

φλx(exp v)〈fx, gx〉 dµ(x).

Hence we can estimate

|〈R(exp v)f, g〉| ≤
∫
ϕ−1(Ĝsph)

|φλx(exp v)|‖fx‖‖gx‖ dµ(x)

≤ esssupϕ∗µ|Ĝsph
|φλx(exp v)|‖f‖2‖g‖2

≤ sup
λ∈σ̃
|φλ(exp v)|‖f‖2‖g‖2.

For the elementary spherical function we have the well-known estimates

|φλ(exp v)| ≤ e<λ(v)Ξ(exp v) ≤ dεe<λ(v)e−ρ(v)eε‖v‖

for <λ ∈ a+ and any ε > 0. This completes the proof. �

As a direct consequence of Lemma 6 and 7 we get the following proposition.

Proposition 8.
ψΓ(v) ≤ sup

λ∈σ̃
<λ(v) + ρ(v).

Note that this bound on the counting function is even a little bit more precise compared
to the bounds stated in the main theorem, because the right hand side is not simply a
dilation of ρ but might be a more precise functional.

We can also prove an analogue of Lemma 6 which implies an obstruction on the joint
spectrum instead of an obstruction on ψΓ.
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Lemma 9. Suppose that there exists a homogeneous function θ : a+ → R such that for all
ε > 0, there is dε > 0 such that for any K-invariant functions f, g ∈ L2(Γ\G) and any
v ∈ a+

|〈R(exp v)f, g〉| ≤ dεe−θ(v)eε‖v‖‖f‖2‖g‖2.
Then this implies that

<λ ≤ ρ− θ
for all λ ∈ σ̃.

In particular, L2(Γ\G) is tempered if and only if σ̃ ⊆ ia∗.

Proof. Let ε̃ > 0, Xsph = ϕ−1(Ĝsph), λ0 ∈ σ̃, and Aε̃ := {x ∈ Xsph | |λx − λ0| <
ε}. Then µ(Aε̃) > 0 by (2.2). Put fε̃ = µ(Aε̃)

−1/2
∫ ⊕
X 1Aε̃(x)wKx dµ(x) where wKx ∈

πKx is normalized. By definition fε̃ ∈ L2(Γ\G)K is normalized and 〈R(exp v)fε̃, fε̃〉 =
µ(Aε)

−1
∫
Aε
φλx(exp v)dµ(x). We infer that φλ0(exp v) = limε̃→0〈R(exp v)fε̃, fε̃〉 and there-

fore by the assumed bound on the matrix coeffcients we get |φλ0(exp v)| ≤ dεe−θ(v)eε‖v‖ for
any ε > 0. Without loss of generality assume <λ0 ∈ a∗+. From [vdBS87, Thm. 3.5 and
proof of Thm. 10.1] follows that there is a polynomial p(t) such that

φλ0(exp tv)p(t)−1e−t(λ0−ρ)(v) → 1 as t→∞.
Hence,

1 ≤ lim sup
t→∞

dε|p(t)|−1et(−θ(v)+ε‖v‖−<λ0(v)+ρ(v))

for any ε > 0. We conclude

−θ(v) + ε‖v‖ − <λ0(v) + ρ(v) > 0

and
<λ0 ≤ ρ− θ.

This completes the proof. �

4. Decay of coefficients in terms of the growth indicator function

The goal of this section is to prove the following theorems.

Theorem 10. Let f1, f2 ∈ Cc(Γ\G), H0 ∈ a+ normalized, and s > ψΓ(H0), s ≥ 0. Then
there exists δ > 0 and C > 0 such that

|〈R(exp tH)f1, f2〉L2(Γ\G)| ≤ Cet(s−2ρ(H))

for all t ≥ 0 and H ∈ Bδ(H0) normalized.

Remark. If H0 is not in the limit cone and therefore ψΓ(H0) = −∞, then

〈R(exp(tH))f1, f2〉 = 0

for t large enough depending on H0.

Theorem 11. If ψΓ ≤ (2− 2p−1)ρ then L2(Γ\G) is strongly Lp+ε.

Proof of Theorem 11. Let us fix an arbitrary ε > 0. Based on Theorem 10 we will show that
the matrix coefficients for functions in Cc(Γ\G) are p+ ε integrable. Let f1, f2 ∈ Cc(Γ\G).
Since

(4.1)

∣∣∣∣∣
∫

Γ\G
f1(Γgh)f2(Γg) dΓg

∣∣∣∣∣ ≤
∫

Γ\G
max
k∈K
|f1(ghk)|max

k∈K
|f2(gk)| dg
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we can assume that fi is non-negative and right-K-invariant.
Since ψΓ ≤ (2 − 2p−1)ρ for any H0 ∈ a+, we can find an sH0 ≥ 0 such that ψΓ(H0) <

sH0 < (2 − 2(p + ε)−1)ρ(H0). Then by Theorem 10 for any H0 ∈ a+ normalized, there is
δ > 0 and C > 0 such that

|〈R(exp tH)f1, f2〉L2(Γ\G)| ≤ Cet(sH0
−2ρ(H))

for all t ≥ 0 and H ∈ Bδ(H0). By shrinking δ we can assume that sH0 < (2−2(p+ε)−1)ρ(H)
for any H ∈ Bδ(H0). By compactness of the unit sphere in a we only need finitely many
H i

0 in order to have

a+ ⊆
⋃
i

R+ · B̃i where B̃i := Bδi(H
i
0) ∩ {H ∈ a, ‖H‖ = 1}.

Therefore using the right K-invariance of fi and the integral formula (2.1) for the decom-
position G = K exp(a+)K we get,∫

G
|〈R(h)f1, f2〉L2(Γ\G)|p+ε dh =

∫
a+

|〈R(expH)f1, f2〉L2(Γ\G)|p+εδ(H) dH

≤
∑
i

∫
R+B̃i

|〈R(expH)f1, f2〉L2(Γ\G)|p+εδ(H) dH.

Hence, it suffices to show for the finitely many i that

(4.2)

∫
R+B̃i

|〈R(expH)f1, f2〉L2(Γ\G)|p+εδ(H) dH

is finite. Using polar coordinates and δ(H) ≤ e2φ(H) (4.2) is bounded by

C ′ sup
H∈B̃i

∫ ∞
0
|〈R(exp tH)f1, f2〉L2(Γ\G)|p+εe2ρ(tH)tdim(a)−1 dt.

Now we use Theorem 10 to obtain that (4.2) is bounded by

CC ′ sup
H∈Bδ(H0)∩{‖·‖=1}

∫ ∞
0

et((sH0
−2ρ(H))(p+ε)+2ρ(H))tdim(a)−1 dt

which is finite since sH0 < ρ(H)(2 − 2(p + ε)−1) for any H ∈ Bδ(H0) normalized. This
completes the proof of Theorem 11. �

Before proving Theorem 10 let us prove the following lemma that is certainly known to
experts but might still be of independent interest.

Recall (see [Hel84, Prop. I.5.21]) that the mapping

(n,m, a, n) 7→ nman ∈ G
is a bijection of N ×M × A × N onto an open submanifold of G whose complement has
Haar measure 0. Moreover,∫

G
f(g) dg =

∫
N×M×A×N

f(nman)e2ρ(log a) dn dm da dn.

Lemma 12. Let ϕ1, ϕ2 ∈ Cc(G) with suppϕi ⊆ NMAN . Then there is a constant C =
Cϕ1,ϕ2 such that for all h ∈ A∣∣∣∣∫

G
ϕ1(h−1gh)ϕ2(g) dg

∣∣∣∣ ≤ Ce−2ρ(log h).
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Proof. By the triangle inequality we can assume that ϕi ≥ 0. Since suppϕi ⊆ NMAN
there exist compact sets CN ⊆ N , CA ⊆ A, and CN ⊆ N with suppϕi ⊆ CNMCACN . We
thus have

c := cϕ1,ϕ2,h :=

∫
G
ϕ1(h−1gh)ϕ2(g) dg

=

∫
CN×M×CA×CN

ϕ1(h−1nmanh)ϕ2(nman)e2ρ(log a) dn dm da dn

≤ ‖ϕ2‖∞
∫
CN×M×CA×CN

ϕ1(h−1nmanh)e2ρ(log a) dn dm da dn.

Since M centralizes A and A is abelian

c ≤ ‖ϕ2‖∞
∫
CN×M×CA×CN

ϕ1(h−1nhmah−1nh)e2ρ(log a) dn dm da dn.

Estimating ϕ1 by its absolute value and using that A normalizes both N and N we get

c ≤ ‖ϕ1‖∞‖ϕ2‖∞
∫
M
dm

∫
CA

e2ρ(log a) da

∫
CN∩hCNh−1

dn

∫
CN∩hCNh−1

dn

≤ ‖ϕ1‖∞‖ϕ2‖∞
∫
M
dm

∫
CA

e2ρ(log a) da

∫
CN

dn

∫
hCNh

−1

dn.

Since the Jacobian factor for the diffeomorphism n 7→ h−1nh ofN is det Ad(h)|n = e−2ρ(log h)

we have∫
hCNh

−1

dn =

∫
N

1CN (h−1nh) dn =

∫
N

1CN (n)e−2ρ(log h) dn =

∫
CN

dn e−2ρ(log h).

We conclude

cϕ1,ϕ2,h ≤ ‖ϕ1‖∞‖ϕ2‖∞
∫
M
dm

∫
CA

e2ρ(log a) da

∫
CN

dn

∫
CN

dn e−2ρ(log h) = Cϕ1,ϕ2e
−2ρ(log h)

proving the theorem. �

Let us now prove Theorem 10.

Proof of Theorem 10. Let f1, f2 ∈ Cc(Γ\G). We can find f̃i ∈ Cc(G) such that fi(Γg) =∑
γ∈Γ f̃i(γg).
We then have

〈R(h)f1, f2〉L2(Γ\G) =

∫
Γ\G

f1(Γgh)f2(Γg) dΓg =

∫
G
f̃1(gh)f2(Γg) dg

=
∑
γ∈Γ

∫
G
f̃1(gh)f̃2(γg) dg.(4.3)

For any g ∈ G there is an open neighborhood Ug of g such that U−1
g Ug ⊆ NMAN since

NMAN is an open neighborhood of the identity element. Since supp f̃i is compact there are
finitely many gk such that supp f̃i ⊆

⋃
Ugk . There exists a partition of unity χk subordinate

to Ugk , i.e. χk ∈ Cc(G) with suppχk ⊆ Ugk and
∑

k χk(x) = 1 for all x ∈ supp f̃i. We

decompose f̃i as
∑

k χkf̃i in (4.3). This allows us to assume without loss of generality
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that supp f̃i is contained in some Ug, since we can estimate each of the finite summands

individually. In particular, we can assume that (supp f̃i)
−1 supp f̃i ⊆ NMAN .

Let γ ∈ Γ such that
∫
G f̃1(gh)f̃2(γg) dg 6= 0. Then there is g ∈ G with gh ∈ supp f̃1 and

γg ∈ supp f̃2. Therefore, γ ∈ (supp f̃2)g−1 ⊆ supp f̃2h(supp f̃1)−1. Hence, there are s1 and

s2 in supp f̃1 and supp f̃2, respectively, with γ = s2hs
−1
1 . By change of variables∫

G
f̃1(gh)f̃2(γg) dg =

∫
G
f̃1(gh)f̃2(s2hs

−1
1 g) dg =

∫
G
f̃1((hs−1

1 )−1gh)f̃2(s2g) dg

=

∫
G
f̃1(s1h

−1gh)f̃2(s2g) dg.

If we define ϕi(g) := maxs∈supp f̃i
|f̃i(sg)| we can estimate∣∣∣∣∫

G
f̃1(gh)f̃2(γg) dg

∣∣∣∣ ≤ ∫
G
ϕ1(h−1gh)ϕ2(g) dg.

Hence we have

|〈R(h)f1, f2〉| ≤ #(Γ ∩ (supp f̃2)h(supp f̃1)−1)

∫
G
ϕ1(h−1gh)ϕ2(g) dg.

Note that if ϕi(g) 6= 0 then there is s ∈ supp f̃i such that sg ∈ supp f̃i. Hence, suppϕi ⊆
(supp f̃i)

−1 supp f̃i is compact and contained in NMAN . Therefore, by Lemma 12∫
G
ϕ1(h−1gh)ϕ2(g) dg ≤ Ce−2ρ(log h).

The theorem now follows from Lemma 13 and Lemma 14 below. �

Lemma 13 (see [Ben96, Prop. 5.1]). For all compact sets C ⊆ G there exists a compact
set L ⊆ a such that µ(CgC) ⊆ µ(g) + L.

Lemma 14. For all H0 ∈ a+ normalized, all L ⊆ a compact, all t large enough, and all
s > ψΓ(H0) with s ≥ 0 there exists δ > 0 and C > 0 such that

#{γ ∈ Γ | µ(γ) ∈ tH + L} ≤ Cets

for H ∈ Bδ(H0) normalized.

Remark. If ψΓ(H0) < 0 then H0 is not in the limit cone and ψΓ(H0) = −∞. Moreover,
there is an open cone containing H0 that contains only finitely many Γ points. In particular,
{γ ∈ Γ | µ(γ) ∈ tH + L} is empty for t large enough depending on H0.

Proof. By definition there exists an open cone C containing H0 such that∑
γ∈Γ,µ(γ)∈C

e−s‖µ(γ)‖ <∞.

Therefore for any R > 0, there is C > 0 such that

#{γ | µ(γ) ∈ C, ‖µ(γ)‖ ∈]t−R, t+R]} ≤ Cets.
Note that for every δ > 0 with Bδ(H0) ⊆ C there is t0 > 0 such that tH + L ⊆ C for every
t ≥ t0 and H ∈ Bδ(H0). If we take R > 0 is such that L ⊆ BR(0) then we can estimate for
all t ≥ t0 and H ∈ Bδ(H0), normalized

#{γ | µ(γ) ∈ tH + L} ≤ #{γ | µ(γ) ∈ C, ‖µ(γ)‖ ∈]t‖H‖ −R, t‖H‖+R]}
≤ Cets. �
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4.1. Proof of Theorem 2.

Proof of Theorem 2. (i) and (ii) are equivalent by Lemma 7 and 9. (ii) implies (iii) by
Lemma 6. (iii) implies (iv) by Theorem 11. If p ∈ 2N, (iv) implies (ii) by Theorem 5. (iii)
implies (v) by [WZ23, Cor. 1.4]:

inf σ(∆) = ‖ρ‖2 −max

{
0, sup
H∈a+

ψΓ(H)− 〈ρ,H〉
‖H‖

}2

≥ ‖ρ‖2 − (1− 2p−1)2

(
sup
H∈a+

〈ρ,H〉
‖H‖

)2

= (1− (1− 2p−1)2)‖ρ‖2 = 2p−1(2− 2p−1)‖ρ‖2. �
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