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Abstract.
Given a Zariski-dense, discrete group, Γ, of isometries acting on (n + 1)-dimensional

hyperbolic space, we use spectral methods to obtain a sharp asymptotic formula for the
growth rate of certain Γ-orbits. In particular, this allows us to obtain a best-known effec-
tive error rate for the Apollonian and (more generally) Kleinian sphere packing counting
problems, that is, counting the number of spheres in such with radius bounded by a grow-
ing parameter. Our method extends the method of Kontorovich [Kon09], which was itself
an extension of the orbit counting method of Lax-Phillips [LP82], in two ways. First,
we remove a compactness condition on the discrete subgroups considered via a technical
cut-off and smoothing operation. Second, we develop a coordinate system which naturally
corresponds to the inversive geometry underlying the sphere counting problem, and give
structure theorems on the arising Casimir operator and Haar measure in these coordinates.

1. Introduction

The purpose of this paper is to give improved error estimates on the counting problem

for Kleinian sphere packings (and discrete counting methods more broadly). A packing

P of Sn (thought of as the boundary of hyperbolic (n + 1)-space, Hn+1) is an infinite

collection of round, disjoint balls whose union is dense in Sn. Following [KK21], such is

called Kleinian if its residual set (left over when the interiors of the balls are removed)

agrees with the limit set of some discrete, geometrically finite subgroup, Γ, of isometries

of Hn+1. A familiar example is the classical Apollonian circle packing in n = 2, see e.g

[Kon13] for more background and see Figure 1 for an example.

Let P be a given Kleinian sphere packing. For a sphere S ∈ P , let b(S) denote its bend,

that is, its (signed) inverse-radius; this is determined after a choice of coordinates on Sn,

and in particular a choice of a point at ∞ (see §4). The Counting Problem is to estimate

the number

NP(T ) := #{S ∈ P : b(S) < T}

of spheres in P with bend bounded by a parameter T →∞. If the packing P is bounded,

that is, the chosen point at infinity is contained in the interior of some ball, then NP(T )

is finite for all T ; otherwise one can count spheres restricted to a bounded region (such as

a period, if the packing is periodic). Let δ = dim(P) be the Hausdorff dimension of the

residual set of P .

Kontorovich is partially supported by NSF grant DMS-1802119, BSF grant 2020119, and the 2020-2021
Distinguished Visiting Professorship at the National Museum of Mathematics.
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Figure 1. A classical Apollonian circle packing in the sphere

S2. Note that the union of balls in the packing is dense in

S2. (Image by Iván Rasskin.)

For the classical Apollonian packing, it is known that δ ≈ 1.3 (in general one has n−1 <

δ < n). In this setting, Boyd [Boy73] showed that NP(T ) = T δ+o(1), which was improved in

Kontorovich-Oh [KO11] to an asymptotic formula, NP(T ) ∼ cPT
δ, where cP is a constant

depending on the packing P . An effective power savings error rate was shown in [Vin12] and

[LO13] independently. These tools and results have been generalized by many authors (see,

e.g., [Kim15, MO15, Pan17, EO21]). In this paper, we introduce a new method, modifying

the approach in [Kon09], to produce a best known error exponent in the Counting Problem

(including the classical Apollonian case).

The error exponent involves the spectrum of the hyperbolic Laplacian ∆ acting on

L2(Γ\Hn+1) where Γ is the symmetry group of the packing. From work of Lax-Phillips

[LP82], Patterson [Pat76], and Sullivan [Sul84], we have that the Laplace spectrum con-

sists of a discrete isolated bottom eigenvalue λ0 = δ(n− δ), then possibly a finite number

of further discrete eigenvalues in the “exceptional” range,

(1.1) λ0 < λ1 ≤ · · · ≤ λk < n2/4,

and purely continuous spectrum above n2/4. (It was conjectured by Sarnak [Sar07] that,

in the case of the classical Apollonian packing, k = 0, that is, there are no other discrete

eigenvalues below 1 except the bottom.) Write λj = sj(n− sj) with n/2 ≤ sj < δ.

Theorem 1. Given a Kleinian packing P, there exists a constant cP > 0 such that:

NP(T ) = cPT
δ
(
1 +O

(
T−η

))
(1.2)
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as T →∞, where

(1.3) η =
2

n+ 3
(δ − s1).

If there is no discrete spectrum other than the base eigenvalue, then we have that

NP(T ) = cPT
δ
(
1 +O

(
T−η(log T )2/(n+3)

))
,

where η = 2
n+3

(δ − n/2).

For the classical Apollonian packing (n = 2), our error exponent is η = 2
5
(δ − s1), and if

there are no discrete eigenvalues above the base then η = 2
5
(δ − 1) ≈ 0.12 . . . , whereas the

best previously known exponent [LO13, Theorem 1.1] was:

(1.4) η =
2

63
(δ − s1),

and if s1 = n/2, this exponent is η = 2
63

(δ − 1) ≈ 0.0097. Hence (1.3) is a significant

improvement over (1.4).

Remark. Counting with a smooth cutoff and extracting all of the lower order terms cor-

responding to eigenvalues other than the base, we obtain the best possible error exponent

η = δ − n/2 (see Theorem 10), which improves over the smooth error exponent in the

Apollonian case η = 2
7
(δ − 1) in [LO13, Theorem 8.2].

The proof of Theorem 1 introduces two new technical ideas: first, of independent interest,

we overcome difficulties in the “abstract spectral theory” method of [Kon09] arising from

a non-compactness condition (see the discussion below), and second, we introduce a new

decomposition tailored to sphere counting problems and derive structure theorems for the

arising Casimir operator and Haar measure.

1.1. Ideas in the Proof.

Previous Approach: To explain the main ideas, we first recall the method introduced

in [Kon09], which itself is modeled on [LP82]. Consider the following related but simpler

to exposit problem. Let Γ < SL2(R) be a discrete, Zariski dense, geometrically finite

subgroup, with critical exponent δΓ > 1/2, acting on the upper half plane H2, and assume

that ∞ is not a point of approximation for Γ. This last condition implies that either ∞ is

a cusp of Γ with stabilizer Γ∞ (in which case the limit set is periodic), or ∞ is not in the

limit set of Γ (and hence the limit set is bounded). Either way, consider the problem of

counting

NΓ(T ) := #{
(
a b
c d

)
∈ Γ∞\Γ : c2 + d2 < T}.

(The Lax-Phillips work counts a2 + b2 + c2 + d2 < T , and new ideas are needed to handle

the potential stabilizer when counting c2 + d2.) The assumption that ∞ is not a point

of approximation assures that the set of such c2 + d2 is discrete, and hence this count is
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finite for any T . The main idea, as sketched below, is to use a particular function of the

Laplacian to grow balls of size T from balls of bounded size.

In this subsection, write G = SL2(R), N = {
(

1 R
0 1

)
}, (so that Γ∞ = Γ ∩ N) and K =

SO(2), and let

(1.5) χT : G→ R :
(
a b
c d

)
7→ 1{c2+d2<T}

be the indicator function of the region in question in G. Note that χT is left-N -invariant

and right-K-invariant, and let

FT : Γ\G/K → R : g 7→
∑

γ∈Γ∞\Γ

χT (γg),

so that NΓ(T ) = FT (e). As observed in [Kon09], FT is in L2(Γ\G/K) = L2(Γ\H) if and

only if ∞ is a cusp of Γ. To access the value of FT at the origin, we let ψ be a smooth

bump function about the origin in G, and automorphize it to Ψ(g) :=
∑

γ∈Γ ψ(γg). Then,

we can write a smooth approximation of NΓ(T ) as

ÑΓ(T ) := 〈FT ,Ψ〉Γ

where the inner-product is with respect to L2(Γ\H). Now suppose we take the inner-

product of FT with an eigenfunction of the Laplacian φ, with eigenvalue λ = s(1 − s).

Then, solving a second order ODE, we would have that

〈FT , φ〉Γ = αT s + βT 1−s,(1.6)

for some α and β depending on φ. The key idea of [Kon09] is then to rewrite (1.6) in a way

that involves the eigenvalue only, and not the coefficients α, β of the eigenfunction. This

is achieved by setting T = 1 and T = b (for some b < 10, see §3.1) in (1.6) and solving for

α, β, to give an expression of the form:

〈FT , φ〉 = KT (s)〈F1, φ〉+ LT (s)〈Fb, φ〉,

for some functions KT , LT . This then allows one to prove the “main identity”, which states

that, in the sense of L2, we have:

FT = KT (∆)F1 + LT (∆)Fb.

This is exactly what we mean by “growing” the ball of radius T from the Laplacian and

bounded norm balls. It is this identity that can be proved rigorously even in the absence

of explicit Whittaker expansions and spectral decompositions.

New Ideas: Much of this approach fails if Γ does not have a cusp at ∞, and the main

purpose of [KO12] was to bypass this “PDE” approach and replace it with homogeneous

dynamics, at the cost of worse error terms. The main new ideas of this paper allow us to

recover the PDE approach (and then extend it to the Kleinian setting).
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The first issue is that FT is not in L2. The observation which eliminates this issue

(made already in [KO12]) is to add a second cut off in the N -direction without losing

any of the orbit, since the limit set is anyway bounded; this adds compactness in the x-

variable, restricted to some sufficiently large interval [−X,X]. Now we again unfold the

inner product 〈FT ,Ψ〉Γ leading to the following integral:∫ ∞
0

∫ X

−X
χT (z)χ̃X(z)Ψ(z)dx

dy

y2
.

We proceed with harmonic analysis on [−X,X]× (0,∞). However this truncation requires

a delicate smoothing procedure to avoid introducing boundary terms in the analysis of the

Laplacian. Once this is accomplished, the proof follows in a similar fashion. See §3.1 for

the details.

In addition to overcoming the restriction in [Kon09], this SL2(R) result is of independent

interest, and improves on [KO12, Theorem 1.8] which used methods from homogeneous

dynamics to count Pythagorean triples.

In the Kleinian Setting: There are several further modifications and innovations

needed to extend the above-described SL2(R) approach to the setting of orbits in cir-

cle/sphere packings. In the previous setting, the stabilizer of χT in (1.5) was left-N and

right-K invariant, and so it was natural to use Iwasawa coordinates SL2(R) = NAK. In

the setting of sphere packings, one counts spheres in the orbit S0Γ with bend less than T ;

here S0 is a fixed (n − 1)-sphere in R̂n = Rn ∪ {∞} = ∂Hn+1 and Γ < G = SO(n + 1, 1)

is a symmetry group of the packing, acting on the right by Möbius transformations. The

analogous function χT is given by:

χT : G→ R : g 7→ 1{b(S0g)<T},

where again b(S) is the bend of a sphere S. This function is left-H invariant, where

H = StabG(S0) ∼= SO(n, 1); it is also right invariant under the group L of affine motions,

since translating a sphere does not change its bend. The latter decomposes further as

L = UM, where U is a one-parameter unipotent group (which controls the co-bend, defined

to be the bend of the inversion of a sphere through the unit sphere), and M ∼= SO(n)

rotates the sphere about the origin. It turns out that H ∩ M ∼= SO(n − 1), and set

M1 := M/(H ∩M) ∼= Sn−1. The subgroup of G which directly controls the bend is also a

one-parameter unipotent group we call U , leading to the map:

H × U × U ×M1 → G,

which is an isomorphism in a neighborhood of the identity; see §4.2 for details. An im-

portant feature of this decomposition is the fact that the Haar measure of G in these

coordinates decomposes as a product of H-Haar measure on the H component, times the

M1-Haar measure on the M1 component, and times something depending only on U and
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U ; see §4.4. Moreover, in the proof, we only need the Casimir operator restricted to left-H-

and right-M1-invariant functions, for which we derive a nice, concise explicit expression in

any dimension; see §4.5.

Let Γ1 := Γ ∩H denote the stabilizer of S0 in Γ. It follows from the Structure Theorem

for Kleinian packings [KK21, Theorem 22] that Γ1 is a lattice in H (that is, it acts with

finite covolume); this fact will be used crucially in our analysis. The finiteness of the volume

of Γ1\H is analogous in the SL2(R) setting to the finiteness of the volume of K, though

the latter is trivial since K is compact. Note that we acted on the left in SL2(R) and it is

more convenient to act on the right for sphere packings.

In the SL2(R) setting, the N direction was unbounded and required a cut-off. Analo-

gously here, the U -direction is unbounded; this can be controlled via a similar truncation

procedure by invoking the fact that the limit set is bounded in the U direction, see Lemma

11.

Remark. Note that if the stabilizer of P contains a full rank unipotent subgroup then the

methods of [Kon09] may be applied directly. For the existence of such, see [KN19].

1.2. Organization. In section 2 we collect some preliminaries. In section 3, we warm

up to the counting theorem and illustrate the main ideas by proving a result analogous to

Theorem 1 in the SL2(R) setting. In section 4, we switch to the general SO(n+1, 1) setting,

and derive the Haar measure, and Casimir operator in the above-described coordinate

system. Finally, in section 5 we prove Theorem 1.

1.3. Acknowledgements. The authors are grateful to Stephen D. Miller for enlightening

conversations and suggestions, and to Iván Rasskin for allowing us to use his image in

Figure 1 generated from his polytopack Mathematica package (in preparation).

2. Preliminaries

Lie algebras and the Casimir Operator:

We collect here some standard facts about the group G = SO◦(n+1, 1) (where ◦ denotes

the connected component of the identity), and its Lie algebra g = Lie(G) of dimension

d := dim(g) = (n+ 1)(n+ 2)/2.

In general, Casimir operators generate the center of the universal enveloping algebra

U(g). In our rank-one setting, we can compute the Casimir operator C as follows. Let

X1, . . . , Xd be a basis for the Lie algebra g, and let X∗1 , . . . , X
∗
d be a dual basis with respect

to the Killing form:

B(X, Y ) = Tr(ad(X) ◦ ad(Y )),
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that is, B(Xi, X
∗
j ) = 1{i=j}. Then the Casimir operator can be expressed as

C =
d∑
i=1

XiX
∗
i .

Since the elements of the Lie algebra act like first order differential operators, the Casimir

operator acts as a second order differential operator on smooth functions on G; see §4.5 for

a detailed calculation in our setting.

Let K ∼= SO(n + 1) < G be a maximal compact subgroup. When restricted to K-

invariant smooth functions on G, the Casimir operator C agrees (up to constant) with the

hyperbolic Laplacian ∆ under an identification G/K ∼= Hn+1.

Decomposition of L2(Γ\G) into irreducibles:

Let Γ be a discrete, geometrically finite, Zariski dense subgroup of G. Given Iwasawa

coordinates G = NAK, let M ∼= SO(n) be the centralizer of A in K. The group G acts by

the right-regular representation on the Hilbert space H := L2(Γ\G) of square-integrable

Γ-automorphic functions. The space H decomposes into components as follows:

(2.1) H = H0 ⊕H1 ⊕ · · · ⊕ Hk ⊕Htempered ⊕Hnonspherical.

Here each Hj is the G-span of the eigenfunction corresponding to the eigenvalue λj =

sj(n − sj) in (1.1), each of which is an irreducible spherical complementary series rep-

resentation with parameter sj > n/2. Moreover, Htempered denotes tempered spectrum,

and Hnonspherical consists of non-spherical complementary series representations (which can

only occur if n ≥ 3 [Kna01]). Note that if v ∈ H is right M -invariant, then its projection

to Hnonspherical vanishes, since non-spherical complementary series representations have no

M -fixed vectors. Moreover, the subspace HK
j of K-fixed vectors in Hj is 1-dimensional,

and spanned by the corresponding eigenfunction in L2(Γ\Hn+1) ∼= L2(Γ\G)K .

Abstract Spectral Theorem:

We recall the abstract spectral theorem (see for example [Rud73, Ch. 13]) for unbounded

self-adjoint operators. Let L be a self-adjoint, positive semidefinite operator on the Hilbert

space H. In our applications H will be either L2(Γ\G) or a subspace thereof and L will be

the Casimir operator.

Theorem 2 (Abstract Spectral Theorem). There exists a spectral measure ν on R and a

unitary spectral operator ̂ : H → L2([0,∞), dν) such that:

i) Abstract Parseval’s Identity: for φ1, φ2 ∈ H

〈φ1, φ2〉H = 〈φ̂1, φ̂2〉L2([0,∞),dν);(2.2)
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ii) The spectral operator is diagonal with respect to L: for φ ∈ H and λ ≥ 0,

L̂φ(λ) = λφ̂(λ);(2.3)

Moreover, if λ is in the point specturm of L with associated eigenspace Hλ, then for any

ψ1, ψ2 ∈ H one has

ψ̂1(λ)̂̄ψ2(λ) = 〈ProjHλ ψ1,ProjHλ ψ2〉,(2.4)

where Proj refers to the projection to the subspace Hλ. In the special case that Hλ is

one-dimensional and spanned by the normalized eigenfunction φλ, we have that

ψ̂1(λ)̂̄ψ2(λ) = 〈ψ1, φλ〉〈φλ, ψ2〉.(2.5)

3. The SL2(R) Case

In this section, let G := SL2(R) and Γ < G be a Zariski dense, finitely generated, discrete

subgroup with δΓ > 1/2. The goal of this section is to prove Theorem 3 below, that is,

to improve on [KO12, Theorem 1.11] by extending the proof of [Kon09, Theorem 1.3 (1)]

to the setting where Γ∞ is trivial. This will serve as a model for the method that we will

generalize to higher dimensions in the rest of the paper.

Again, from work of Lax-Phillips [LP82] and Patterson [Pat76] we have that the Laplace

spectrum below 1/4 consists of a finite number of discrete eigenvalues

(3.1) λ0 = δΓ(1− δΓ) < λ1 ≤ · · · ≤ λk < 1/4.

Write λj = sj(1− sj) with sj ∈ (1
2
, 1).

Theorem 3. Let G := SL2(R) and Γ < G a Zariski dense, finitely generated, discrete

subgroup with δΓ > 1/2. Assume that ∞ is either a cusp for Γ with stabilizer Γ∞ or ∞ is

not in the limit set of Γ. Then there exist constants c0 > 0, c1, . . . , ck, and η > 0 such that

as T →∞
NΓ(T ) : = #{

(
a b
c d

)
∈ Γ∞\Γ : c2 + d2 < T}

= c0T
δΓ + c1T

s1 + . . . ckT
sk +O(T η log1/2 T ),

(3.2)

with η = 1
2
(δΓ + 1

2
).

Remark. The case where ∞ is a cusp is the content of [Kon09, Theorem 1.3 (1.5)], so we

assume below that ∞ is not in the limit set of Γ.

Remark. Note that in this case, since we are counting points in H (which is K invariant)

we can extract all lower order terms corresponding to eigenvalues other than the base.

Remark. The corresponding error term in [KO12, §4.1] is significantly worse (and not even

explicitly specified) as compared to Theorem 3, due in part to much worse dependence on

Sobolev norms of the corresponding test vectors.
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To begin the proof, we proceed as described in the Introduction. For g =
(
a b
c d

)
∈ G, let

χT (g) :=

1 if c2 + d2 < T,

0 otherwise.
(3.3)

Under the identification G/K ∼ H (where K = SO(2)), g 7→ z = gi, χT corresponds to

the conditions =(z) > 1/T .

Now average χT over the group Γ:

FT (g) :=
∑
γ∈Γ

χT (γg).(3.4)

such that the count in (3.2) can be written as NΓ(T ) = FT (e).

To access the value of FT at the identity, we follow the standard procedure of smoothing

the count. To this end, we fix once and for all a smooth, even, nonnegative, compactly sup-

ported bump function ψ1 ∈ C∞0 (R) with unit total mass,
∫
R ψ1dx = 1. Given ε > 0, we set

ψε(x) := 1
ε
ψ1(x

ε
). Write Iwasawa coordinates as nx :=

(
1 x
0 1

)
∈ N, ay := Diag(

√
y, 1/
√
y) ∈

A, and k ∈ K = SO(2), and by abuse of notation, write ψ : G→ R+ as follows:

ψ(nxayk) := ψε(x)ψε(log y).(3.5)

Clearly ψ is right-K-invariant, and it is easy to compute that
∫
G
ψ(nxayk)dx dy dk

y2 = 1+O(ε).

We automorphise ψ by setting:

Ψ(g) :=
∑
γ∈Γ

ψ(γg),

and consider the smoothed count:

ÑΓ(T ) := 〈FT ,Ψ〉.

After unfolding FT , we see that

ÑΓ(T ) :=
∑
γ∈Γ

wT (γ),

where wT = wT,X,ε : H→ [0, 1] is given by

wT (g) :=

∫
G

χT (gh)ψ(h)dh.(3.6)

The following theorem, from which Theorem 3 follows by optimizing error terms, gives

an asymptotic expansion for the smoothed count in the SL2(R)-setting.

Theorem 4. Assume that ε > 0 is small enough. Then there exist constants c
(i)
Γ,ε for

i = 0, 1, . . . , k such that

ÑΓ(T ) = c
(0)
Γ,εT

δΓ + c
(1)
Γ,εT

s1 + · · ·+ c
(k)
Γ,εT

sk +O

(
1

ε
T 1/2 log T

)
(3.7)
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with c
(0)
Γ,ε > 0, and the implied constant depending only on Γ. Moreover c

(i)
Γ,ε = c(i)(1 +O(ε))

for all i = 0, 1, . . . , k.

It remains to prove Theorem 4.

3.1. Inserting the Laplacian. The smooth count above is an L2 inner product of the

indicator function FT with a smooth bump function Ψ. The key idea now is to forget about

Ψ and analyze the structure of the inner product of FT with any smooth L2 function.

Following [Kon09, §3] let

KT (s) :=
T sb1−s − T 1−sbs

b1−s − bs
, LT (s) :=

T 1−s − T s

b1−s − bs
,(3.8)

where b > 1 is a constant which can be taken to be less than 3 (see [Kon09, (3.7)]).

With that, if φ were an eigenfunction of the Laplacian then we would have 〈FT , φ〉 =

AφT
s +BφT

1−s. In this case, we could conclude that

〈FT , φ〉 = KT (s)〈F1, φ〉+ LT (s)〈Fb, φ〉.

Thus we would like to show that

FT = KT (∆)F1 + LT (∆)Fb.(3.9)

However, there is a problem created by the fact that FT is not in L2(Γ\H). To get around

this, we will first restrict the support of FT in the x-direction before applying various

smoothing arguments to conclude that a version of (3.9) holds for the modified FT . Since

∞ is not in the limit set, it is in the free boundary, and hence there exists a fixed an

X = X(Γ) > 0 such that the full region ((−∞,−X] ∪ [X,∞)) × [0,∞) ⊂ H is contained

in a single fundamental domain, see Figure 2.

Restricting the Real Direction: Define the following counting function

FT,X(z) :=
∑
γ∈Γ

χT (γz)χ̃X(γz)

where

χ̃X(x+ iy) :=

1 if x ∈ [−X,X],

0 if x 6∈ [−X,X].

Note that by our choice of X, we still have that NΓ(T ) = FT (i) = FT,X(i).

Now, consider the difference operator

GT,X := FT,X −KT (∆)F1,X − LT (∆)Fb,X .

By self-adjointness of ∆, for any Ψ ∈ L2(Γ\H) we have

〈GT,X ,Ψ〉Γ\H =

∫
Γ\H

[FT,X(z)Ψ(z)− F1,X(z)(KT (∆)Ψ)(z)− Fb,X(z)(LT (∆)Ψ)(z)] dz,
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H
2X

Figure 2. Above we sketch a fundamental domain of Γ which

extends to infinity in the real direction, and the cut-off due

to χ̃X which is large enough such that [−X,X] contains the

entire limit set.

which we can unfold to

〈GT,X ,Ψ〉Γ\H =∫
H

(χT (z)χ̃X(z)Ψ(z)− χ1(z)χ̃X(z)(KT (∆)Ψ)(z)− χb(z)χ̃X(z)(LT (∆)Ψ)(z)) dz.

(3.10)

Our goal is to show, that for any Ψ ∈ L2(Γ\H) we have 〈GT,X ,Ψ〉Γ = 0. This implies the

following identity

Proposition 5. For any values of T and X large enough, we have

FT,X = KT (∆)F1,X + LT (∆)Fb,X .(3.11)

where KT and LT are the differential operators defined above and b fixed.

Smoothing χT : Now we smooth the function χT so that we can move the Laplacian

over to χ̃X via self-adjointness. Let σ > 0, and define the following smooth cut-off function

χ1,σ(x+ iy) :=

1 if y > 1,

0 if y < (1− σ),

and smooth, in between the two bounds. Now let χT,σ(x+ iy) := χ1,σ(x+ iTy).

Let Gσ
T,X be defined similarly to GT,X , with χT replaced by χT,σ. That is, let

IX := [−X,X]

and let

Gσ
T,X(Ψ) :=∫ ∞

0

∫
x∈IX

χ̃X(z) (χT,σ(z)Ψ(z)− χ1,σ(z)(KT (∆)Ψ)(z)− χb,σ(z)(LT (∆)Ψ)(z)) dx
dy

y2
.



12 ALEX KONTOROVICH AND CHRISTOPHER LUTSKO

Note that by construction for any fixed t∫ ∞
0

∫
x∈IX

|χt,σ(z)− χt|2 dx
dy

y2
�t,X σ.

Thus, using Cauchy-Schwarz we have that for any Ψ ∈ L2(Γ\H) we have that

lim
σ→0

Gσ
T,X(Ψ) = 〈GT,X ,Ψ〉Γ.

Now our goal, is to establish the following lemma, note that we have already fixed T , X

large enough, σ > 0 small enough.

Lemma 6. For any function Ψ ∈ L2(Γ\H) we have that Gσ
T,X(Ψ) = 0.

To prove this lemma, fix ε > 0 small enough, we will show that
∣∣Gσ

T,X(Ψ)
∣∣ < ε.

Periodizing and Smoothing Ψ: Now we periodize and smooth Ψ in order to do

spectral theory on IX × (0,∞) which we call the space FX . Note that FX ∼= Ξ∞\H for an

elementary group Ξ∞, but this coordinate description is more useful when we generalize to

higher dimensions. Let L2(FX) denote the L2 space with measure given by dxdy
y2 . Let Ψ̃(z)

denote a function which agrees with Ψ on

[−X,X − η)× (0,∞) ⊂ H,

where η > 0 is to be chosen later. From x = X − η to x = X − η/2, Ψ̃(z) smoothly

interpolates between the values of Ψ(z) and Ψ(z − 2X), and from x = X − η/2 up to

x = X, Ψ̃ is exactly equal to Ψ(z−2X), ensuring that all derivatives of Ψ̃ at the boundary

values x = X and x = −X agree.

Note that the L2(IX × [1/2T,∞)) cost of moving from Ψ to Ψ̃ is small. Indeed,

diff(Ψ) :=

∫ ∞
1/2T

∫ X

X−η

∣∣∣Ψ̃(z)−Ψ(z)
∣∣∣2 dxdy

y2

�
∫ ∞

1/2T

∫ X

X−η
|Ψ(z − 2X)|2 + |Ψ(z)|2dxdy

y2
.

Since Ψ ∈ L2(Γ\H), as η → 0, this integral goes to zero, and hence by choosing η small

enough, we can make the difference less than ε2.

Now note that∫ ∞
0

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT,σ(∆)χb,σ(z))Ψ(z)dx

dy

y2

=

∫ ∞
1/2T

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))(Ψ(z)− Ψ̃(z))dx

dy

y2

+

∫ ∞
1/2T

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))Ψ̃(z)dx

dy

y2
,
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and by Cauchy Schwarz and the above argument∫ ∞
1/2T

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))(Ψ(z)− Ψ̃(z))dx

dy

y2

� (diff(Ψ))1/2

(∫ ∞
0

∫
IX
|(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))|2dxdy

y2

)1/2

�σ,T,X ε.

(3.12)

Hence it remains to show that∫ ∞
0

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))Ψ̃(z)dx

dy

y2
= 0.(3.13)

Working on FX: To prove (3.13) let

gσT,X(z) := χ̃X(z) (χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z)) .

Thus, we are left with

〈gσT,X , Ψ̃〉FX .

Lemma 6 will then follow from the following lemma, which shows that, for an arbitrary

ψ ∈ L2(FX) the inner product 〈gσT,X , ψ〉 is not correlated with any almost eigenfunction:

Lemma 7. Fix T , X, and σ as above, then for any ψ ∈ L2(FX) and any λ ≥ 0, we have

〈gσT,X , ψ〉FX �λ,T,σ,X ‖(∆− λ)ψ‖FX .(3.14)

Proof of Lemma 7. Fix ψ ∈ L2(FX) and consider

〈χT,σχ̃X(z), ψ〉FX =

∫ ∞
0

χT,σ(y)

∫
IX
χ̃X(x)ψ(z)dx

dy

y2
,

and define f(y) :=
∫
IX
χ̃X(x)ψ(z)dx and h(y) :=

∫
IX

(∆ − λ)χ̃X(x)ψ(z)dx. Then we note

that, by periodicity in the x-direction,

h(y) =

∫
IX

(∆− λ)χ̃X(x)ψ(z)dx

= −y2∂yyf(y)− λf(y).

Thus, [Kon09, Lemma B.1] (which is a simple application of the method of variation of

parameters) implies

f(y) = αys + βy1−s + ysu(y) + y1−sv(y),(3.15)

where

u(y) := (1− 2s)−1

∫ y

(1−σ)/T

w−1−sh(w)dw, and v(y) := (1− 2s)−1

∫ y

(1−σ)/T

ws−2h(w)dw,
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if λ 6= 1/4. And

f(y) = αy1/2 + βy1/2 log y + y1/2u(y) + v(y)y1/2 log y,(3.16)

where

u(y) :=

∫ y

(1−σ)/T

w−3/2 log(w)h(w)dw, and v(y) := −
∫ y

(1−σ)/T

w−3/2h(w)dw.

Therefore (assuming λ 6= 1/4 for simplicity) integrating the y variable gives

〈χT,σχ̃X , ψ〉Ξ∞ =

∫ ∞
0

χT,σ(y)(αys + βy1−s)
dy

y2
+ I + II

where I :=
∫∞

0
χT,σ(y)ys−2u(y)dy and II :=

∫∞
0
χT,σ(y)y−1−sv(y)dy. Now we can use

Cauchy-Schwarz (as in [Kon09, (B.5)]) to establish that I, II � ‖(∆ − λ)ψ‖FX . In fact,

this is the crucial reason why we needed to work on FX which is compact in the x direction,

and thus χT,σ is (square) integrable. Thus, we may conclude

〈χT,σ, ψ〉FX = AσT
s +BσT

1−s +O(‖(∆− λ)ψ‖FX )

where Aσ = β
∫∞

0
χ1,σ(y)y−1−sdy and Bσ := α

∫∞
0
χ1,σ(y)ys−2dy.

Given our choice of KT and LT from (3.8) we have that

KT (s), LT (s)�

T s if s ∈ (1/2, 1],

T 1/2 log T if s = 1/2 + it.
(3.17)

Then, by the analysis in [Kon09, Proposition 3.5] we have

〈gσT,X , ψ〉FX �T,λ,X,σ ‖(∆− λ)ψ‖FX(3.18)

for any choice of ψ ∈ L2(FX). �

From there we can choose ψ to be as in [Kon09, Proof of Theorem 3.2] to establish that

gσT,X is almost everywhere 0. Note that for this argument to work one only needs the bound

(3.18), a Hilbert space (here L2(FX)), an unbounded self-adjoint operator (i.e ∆), and the

abstract spectral theorem.

From there we conclude that

〈gσT,X , Ψ̃〉FX = 0

From there, we conclude (3.13), namely∫ ∞
0

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT (∆)χb,σ(z))Ψ̃(z)dx

dy

y2
= 0.(3.19)

Then thanks to (3.12) we conclude

Gσ
T,X(Ψ) =

∫ ∞
0

∫
IX
χ̃X(z)(χT,σ(z)−KT (∆)χ1,σ(z)− LT,σ(∆)χb,σ(z))Ψ(z)dx

dy

y2
�σ,T,X ε
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for any value of ε > 0. Taking ε to 0 establishes Lemma 6. Since we have that for any

Ψ ∈ L2(Γ\H)

lim
σ→0

Gσ
T,X(Ψ) = 〈GT,X ,Ψ〉Γ

we conclude that 〈GT,X ,Ψ〉Γ = 0. Which is exactly Proposition 5. �

3.2. Proof of Theorem 4. For the proof of Theorem 4, we return to the smoothed count

ÑΓ(T ) = 〈FT,X ,Ψ〉Γ.

Now apply the abstract Parseval’s identity (2.2)

〈FT,X ,Ψ〉Γ = 〈F̂T,X , Ψ̂〉Spec(Γ)

= F̂T,X(λ0)Ψ̂(λ0) +

∫
Spec(Γ)\{λ0}

F̂T,X(λ)Ψ̂(λ)dν(λ),(3.20)

where for ease of exposition, we assume that λ0 is the only eigenvalue below 1/4; in general,

the other eigenvalues are dealt with similarly.

Addressing the first term in (3.20), we can use the abstract spectral theorem, and the

fact that FT,X and Ψ are K-fixed, to say

F̂T,X(λ0)Ψ̂(λ0) = 〈FT,X , φ0〉〈Ψ, φ0〉,

where φ0 is the base eigenfunction. Note that, for the first factor we can apply the main

identity Proposition 5, and the definition to conclude

F̂T,X(λ0)Ψ̂(λ0) = T δc〈φ0,Ψ〉Γ +O(T 1/2)

for some constant c independent of T . As for the second factor, by the mean value theorem

(see [Kon09, (4.17)] for details) we have

〈φ0,Ψ〉Γ = φ0(i) +O(ε).

It remains to bound the contribution to (3.20) from the remainder of the spectrum (as-

suming here that there are no isolated eigenvalues apart from the base). Using Proposition

5 we have that

Err :=

∫
Spec(Γ)\{λ0}

F̂T,X(λ)Ψ̂(λ)dν

=

∫
Spec(Γ\{λ0}

(
̂KT (∆)F1,X(λ) + ̂LT (∆)Fb,X(λ)

)
Ψ̂(λ)dν.
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By the abstract spectral theorem and (3.17) we have ̂KT (∆)F1,X(λ) � T 1/2 log T F̂1,X(λ).

Thus, by Cauchy-Schwarz, positivity, and Parseval’s identity∫
Spec(Γ)\{λ0}

KT (λ)F̂1,X(λ)Ψ̂(λ)dν � T 1/2 log T

∫
Spec(Γ)\{λ0}

F̂1,X(λ)Ψ̂(λ)dν

� T 1/2 log T

(∫
Spec(Γ)\{λ0}

∣∣∣F̂1,X(λ)
∣∣∣2 dν

)1/2(∫
Spec(Γ)\{λ0}

∣∣∣Ψ̂(λ)
∣∣∣2 dν

)1/2

� T 1/2 log T‖F1,X‖Γ‖Ψ‖Γ,

Since Ψ is an ε-approximation to the identity, and since the term involving LT can be

treated similarly, we thus conclude

Err� 1

ε
T 1/2 log T.

This completes the proof of Theorem 4.

4. Kleinian Sphere Packings

Turning now to the sphere packing setting, let P be a fixed bounded Kleinian sphere

packing. Given a sphere S ∈ P let b(S) denote the bend of S. Then our aim is to establish

the asymptotic, (1.4) for

NP(T ) := #{S ∈ P : b(S) < T}.

4.1. Preliminaries on Inverse Coordinate Systems and the Symmetry Group.

We now give a model of hyperbolic space, and develop an inversive coordinate system for

the spheres on the ideal boundary of such; see, e.g., [KK21, §3.1] for background. To begin,

we fix a real quadratic form Q of signature (n + 1, 1). For concreteness, we can change

variables over R to the “standard” example of Q = −x0xn+1 + x2
1 + · · · + x2

n which has

half-Hessian

Q =

 0 0 −1
2

0 In 0

−1
2

0 0

 .(4.1)

Then the quadratic space (V = Rn+1,1, Q) with product v ? w = v · Q · wt contains the

cone V0 := {v : Q(v) = 0}, the one-sheeted hyperboloid V1 = {v : Q(v) = 1}, and the

two-sheeted hyperboloid V−1 := {v : Q(v) = −1}; fix either component of the latter for our

model of Hn+1. The group OQ(R) acts on V−1, and its subgroup G = O◦Q(R), that is, the

connected component of the identity, fixes the components.

There is a 1-1 correspondence between vectors v ∈ V1 and (oriented) spheres in ∂Hn+1,

obtained as follows. Given such a v, the orthogonal space v⊥ := {w ∈ V : v ? w = 0}
intersects the fixed component of V−1 at a hyperplane ∼= Hn, and the ideal boundary of the

latter is the desired sphere.
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V

V1

V0
V−1

Figure 3. In the above figure, we display (half of) the

quadratic space V , and its components V0, V1 and V−1.

This geometric correspondence is made algebraic after a choice of (inversive) coordinates

on V1 as follows. Let V ∗ := {v∗ : V → R, linear} be the dual space to V , and Q∗ the dual

form, so that v∗ ? w∗ = v ? w. Fix a non-zero null covector b∗ ∈ V ∗, that is, Q∗(b∗) = 0.

Also fix a null covector b̂∗, with b∗ ? b̂∗ = −2. For the case of the standard form in (4.1),

one can make the choice b∗ = (0, . . . , 0,−2) and b̂∗ = (−2, 0, . . . , 0). Then one picks an

orthonormal system, bx∗1, . . . , bx
∗
n, for the orthogonal complement to the span of b∗ and b̂∗.

Then the sphere corresponding to the vector v ∈ V1 has bend (that is, inversive radius)

(4.2) b∗(v),

and center 1
b∗(v)

(bx∗1(v), . . . , bx∗n(v)). When b∗(v) = 0, the sphere is a plane (which has no

“center”), so the expression (bx∗1(v), . . . , bx∗n(v)) is a unit normal to the plane. The “co-

bend” of a sphere is defined as the bend of the image of the sphere on inversion through the

unit sphere at the origin. The co-bend of the sphere corresponding to v is given by b̂∗(v).

Therefore the tuple (b∗(v), bx∗1(v), . . . , bx∗n(v), b̂∗(v)) gives a complete inversive coordinate

system on V1. It is sometimes convenient to isolate the ‘bend-center’, comprising the

coordinates not including the first and last; so we define:

(4.3) bz∗(v) := (bx∗1(v), . . . , bx∗n(v)).

A Kleinian sphere packing decomposes into finitely many Γ-orbits (by the Structure

Theorem [KK21, Theorem 22]), which in the above coordinate system corresponds simply
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v
v⊥

v⊥ ∩ V−1

Figure 4. Here we display a vector v ∈ V1, its orthogonal space

v⊥ and the intersection this orthogonal space with V−1 which

corresponds to an ideal sphere.

to orbits v0 · Γ, with v0 ∈ V1, and the bends of such are measured by b∗(v), for v ∈ v0 · Γ.

We count the whole packing by counting one orbit at a time.

4.2. Decomposition of G. Fix v0 as above. Let χT (g) = 1{b∗(v0g) < T} denote the

indicator function of the vector v0g having bend at most T , where g ∈ G. This function is

left-invariant under H := StabG(v0) = {g ∈ G : v0g = v0}, and also right-invariant under

L := Stabb∗ = {g ∈ G : b∗(vg) = b∗(v), for all v ∈ V }.
It will be useful to decompose G = O◦Q(R) (for Q given by (4.1)) and its Lie algebra

g := Lie(G) as follows. First we decompose g as:

g = h⊕ ū⊕ u⊕m1.

Here h = Lie(H), and with

M :=

1 0 0

0 O(n) 0

0 0 1

 ,

we have that M ∩ H ∼= O(n − 1). Then set m := Lie(M) and m1 := m 	 Lie(M ∩ H).

(Note that h∩m) is trivial when G ∼= O(3, 1).) Set M1 := expm1 < G. The one-parameter
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Lie algebras u and ū are given by:

u =




0 0n−1 w 0

0 0 0 0n−1

0 0 0 2w

0 0 0 0

 : w ∈ R

 ,

and

ū =




0 0 0 0

0n−1 0 0 0

y 0 0 0

0 0n−1 y/2 0

 : y ∈ R

 ,

which exponentiate to the groups

U :=

u(w) :=


1 0n−1 w w2

0 In−1 0 0n−1

0 0 1 2w

0 0 0 1

 : w ∈ R

 ,

and

U :=

u(y) :=


1 0 0 0

0n−1 In−1 0 0

y 0 1 0

y2/4 0n−1 y/2 1

 : y ∈ R

 ,

respectively.

This gives the corresponding decomposition:

H × U × U ×M1 → G : (h, u, u,m1) 7→ huum1.

Geometrically this decomposition is in fact very natural. H is the stabilizer of v0, corre-

sponding to the sphere whose orbit we are considering. The action of U changes the bend

of the sphere, while UM1 changes the co-bend by moving the center via a polar coordinate

description of the plane (U as the radial coordinate and M1
∼= O(n)/O(n − 1) giving a

rotation).

Let d := dim(g) = (n + 1)(n + 2)/2. Let k := dim(h) = n(n + 1)/2, and let ` :=

dim(m1) = n− 1. Hence d = k + `+ 2.

4.3. An Explicit Basis.

Before proceeding, it will help our calculations to fix a basis for h and m1. To ease

notation, we will describe a basis in a special case when n = 4, so d = 15, k = 10 and
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` = 3; the general case will be clear by analogy. Take:

X1 :=

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, X2 :=

 0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, X3 :=

 0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
 ∈ h ∩m

X4 :=

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

2
0 0

, X5 :=

 0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2
0 0 0

, X6 :=

 0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1

2
0 0 0 0

,
Lower Triangular in h

X7 :=

( 0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0

)
, X8 :=

( 0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
, X9 :=

( 0 1 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
,

}
Upper Triangular in h

X10 :=

 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

, – Diagonal in h

X11 :=

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1

2
0

 ∈ u, X12 :=

( 0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 0 0

)
∈ u,

X13 :=

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0

, X14 :=

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0

, X15 :=

 0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0

 ∈ m1.

To move back to group elements we denote

hj(xj) := exp(xjXj) ∈ H for j ≤ k,

u(y) := exp(yXk+1) ∈ U,

u(w) := exp(wXk+2) ∈ U,

mj(ϕj) := exp(ϕjXj+k+2) ∈ M1 for 1 ≤ j ≤ `.

It will also be convenient to record the following components of H:

(4.4) HM :=
∏

Xj∈h∩m

exp(xjXj), H+ :=
∏

Xj “Upper Triangular”

exp(xjXj),

H− :=
∏

Xj “Lower Triangular”

exp(xjXj), and HA :=
∏

Xj “Diagonal”

exp(xjXj).

4.4. Calculating the Haar Measure. Given that decomposition of the Lie algebra, we

now derive an explicit form of the Haar measure in our chosen coordinate system. Let

z := (x1, . . . , xk, y, w, ϕ1, . . . , ϕ`)

denote a set of coordinates and let

J : Rd → G : z 7→ h1(x1)h2(x2) . . . hk(xk)u(y)u(w)m1(ϕ1) . . .m`(ϕ`)
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map our coordinate space to G. Then, in these new coordinates we have the following

decomposition of the Haar measure

Theorem 8. [Haar Measure Structure Theorem] Let ρ(z) denote the density of the Haar

measure in z coordinates. Then

ρ(z) = ρH(x1, . . . xk)ρUU(y, w)ρM1(ϕ1, . . . , ϕ`),(4.5)

where ρH and ρM1 are (respectively) the densities for the Haar measure on H and M1.

Moreover we have that ρUU = |1 + wy|n−1.

Proof. Given a linear differential operator on z we can represent it as

Tz = η1∂x1 + · · ·+ ηk∂xk + ηk+1∂y + ηk+2∂w + ηk+3∂ϕ1 + · · ·+ ηd∂ϕ` .

Now using the correspondence between elements of the Lie algebra and linear differential

operators we write

Tz = η1X1 + η2X2 + · · ·+ ηdXd.

To first order, we can write the differential Tz acting on an element of g as

h1(I + η1X1) · · ·hk(I + ηkXk)u(I + ηk+1Xk+1)u(I + ηk+2Xk+2)m1(I + ηk+3) · · ·m`(I + ηd)

= h1 · · ·hknnm1 · · ·m`

{
I + ad((h2 · · ·hkuum1 · · ·m`)

−1, η1X1)

+ ad((h3 · · ·hkuum1 · · ·m`)
−1, η2X2) + · · ·+ ad(m−1

` , ηd−1Xd−1) + ηdXd

}
.

Giving us the differential operator

D(J ) : η1∂x1 + · · ·+ ηk∂xk + ηk+1∂y + ηk+2∂w + ηk+3∂ϕ1 + · · ·+ ηd∂ϕ`

7→ η1 ad((h2 · · ·hknnm1 · · ·m`)
−1, X1) + η2 ad((h3 · · ·hknnm1 · · ·m`)

−1, X2) + . . .

+ ηk+`+1 ad(m−1
` , Xd−1) + ηdXd.

Hence, if we want to apply the differential operator Xj on the right to an element g, then

we simply solve for ηi on the right hand side of this map. Then the left hand side tells us

the action on the coordinates. Let us denote the vector of such ηi’s by (ηj1, ηj2, . . . , ηjd).

Thus

Xj = ηj1 ad((h2 · · ·hknnm1 · · ·m`)
−1, X1) + ηj2 ad((h3 · · ·hknnm1 · · ·m`)

−1, X2) + . . .

+ ηj(d−1) ad(m−1
` , Xd−1) + ηjdXd,

for every j = 1, . . . , d.

Now to calculate the Haar measure, we proceed by the following methodology: define

the right multiplication operator RA(z) := J −1(J (z) · A) and its Jacobian:

[R′A(z)]jk :=
∂jRA(z)

dzk
.
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Then our goal is to find ρ(z) such that:∫
f(J (z))ρ(z)dz =

∫
f(J (RA(z)))ρ(z)dz.(4.6)

Changing variables y = RA−1(z), on the left hand side gives:∫
f(J (z))ρ(z)dz =

∫
f(J (RA(y)))ρ(RA(y)) |detR′A(y)| dy

which is equal to the right hand side of (4.6). Hence we want to find ρ such that:

ρ(RA(y)) =
ρ(y)

|detR′A(y)|

for all choices of y and A ∈ G. In particular, we may choose y = 0, and A = J (z), which

gives

ρ(z) =
1∣∣∣detR′J (z)(0)

∣∣∣ .(4.7)

Note that since the Haar measure is only unique up to a constant, we set ρ(0) = 1 without

loss of generality. Using our decomposition of the Lie algebra we can write:

[R′J (z)(0)]ij =

[
∂

∂ti
J (z)e

∑d
i=1 tiXi

∣∣∣∣∣
t=0

]
j

Now we can linearize the exponential and then find the corresponding coordinate description

of the differential operator as we did above. The above argument implies

ρ(z)−1 = det
∣∣[R′J (z)(0)]ij

∣∣ = det |ηij|.

Now to simplify matters, we express each adjoint as a linear combination of elements in

the basis:

ad((h2 · · ·hkuum1 · · ·m`)
−1, X1) =

d∑
i=1

µ1iXi

ad((h3 · · ·hkuum1 · · ·m`)
−1, X2) =

d∑
i=1

µ2iXi

. . .

Xd =
d∑
i=1

µdiXi.

Thus, to calculate the Haar measure, by linearity of the adjoint operator, we need to find

a d× d matrix η such that

ηµX = X

where X := (X1, X2, . . . Xd)
T . Hence, since the determinant is multiplicative, we have that

ρ(z) = det[µ].
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Now suppose we wanted to calculate the Haar measure of H, then we can write

ad((h2 · · ·hk)−1, X1) =
d∑
i=1

ν1iXi

ad((h3 · · ·hk)−1, X2) =
d∑
i=1

ν2iXi

. . .

ad(h−1
k , Xk−1) =

d∑
i=1

ν(k−1)iXi

Xk =
d∑
i=1

νkiXi.

For completeness write νji = δi,j for j > k. Then the above argument implies that one can

write the Haar measure on H as ρH(z) = det[ν].

Now the key observation is to write

ad((uum1 · · ·m`)
−1, X1) =

d∑
i=1

c1iXi

. . .

ad((uum1 · · ·m`)
−1, Xk) =

d∑
i=1

ckiXi

ad((um1 · · ·m`)
−1, Xk+1) =

d∑
i=1

c(k+1)iXi

. . .

Xd =
d∑
i=1

cdiXi.

By linearity of the adjoint operator we have that µ = νc, and hence det(µ) = det(ν) det(c).

Or rather, ρ(z) = ρH(x1, . . . , xk)f(w, y, ϕ1, . . . , ϕ`) for some function f .

Moreover, since the Haar measure is unimodular, and since M1 is a group, we can apply

the same argument to M1 on the right, and show that ρ satisfies the product structure

from (4.5).
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Finally, thanks to this product structure, we can take m1, . . . ,ml equal to the identity

when calculating ρUU . Thus, let

ad((uu)−1, Xj) =
d∑
i=1

djiXi, for j = 1, . . . , k

ad((u)−1, Xk+1) =
d∑
i=1

d(k+1)iXi

Xj =
d∑
i=1

djiXi, for j = k + 2, . . . , d.

(4.8)

Hence it remains to find det(d).

No matter the dimension, our basis elements are each one of seven types (in m∩h, lower

triangular in h, upper triangular in h, diagonal, in u, in u, or in m1). Depending on the type

of Xi, we can calculate dij explicitly independent of dimension via an inductive argument.

From which it follows that the d matrix has the following form:

d =


I(n−1)(n−2)/2 0 0 0 0

0 In−1
w2

2
In−1 0 wIn−1

0 y2

2
In−1

1
4
(2 + wy)2In−1 0 1

2
w(2 + wy)In−1

0 0 0 B 0

0 0 0 0 In−1

(4.9)

where B is the 3× 3 matrix given by

B :=

1 + wy −w 1
2
(2 + wy)

−y 1 −y2

2

0 0 1.


Hence, one can determine explicitly thanks to a block matrix decomposition that det(d) =

|1 + wy|n−1. This completes the proof. �

4.5. Calculating the Casimir Operator. As in §2, given our basis, X1, X2 . . . , Xd, for

the Lie algebra in §4.3, there is a corresponding dual basis X∗1 , X
∗
2 , . . . X

∗
d with respect to

the Killing form. Then the Casimir operator can be written as the following second order

differential operator:

C :=
k+2+`∑
i=1

XiX
∗
i .(4.10)

Using the above argument, in z coordinates, we can express Xi =
∑d

j=1 ηij∂j. Likewise, we

can express X∗i =
∑d

j=1 η
∗
ij∂j.
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Now define µ∗ analogously to how we defined µ, that is

ad((h2 · · ·hkuum1 · · ·m`)
−1, X1) =

d∑
i=1

µ∗1iX
∗
i

ad((h3 · · ·hkuum1 · · ·m`)
−1, X2) =

d∑
i=1

µ∗2iX
∗
i

. . .

Xd =
d∑
i=1

µdiX
∗
i .

We then have that η∗ · µ∗X∗ = X∗, and hence η∗ = (µ∗)−1. Thus, if we define ∂ :=

(∂x1 , . . . , ∂nd)
T , then as a differential operator

C =
(
µ−1∂

)
·
(
(µ∗)−1∂

)
.

The Casimir operator in all d variables is, of course, rather unwieldy. However, fortunately

we shall only need the Casimir operator to act on left H-invariant, and right M1-invariant

functions. Hence, if we write µ∗ = ν∗c∗, with ν∗ and c∗ defined analogously to as above,

then when acting on such functions, we have

C =
(
c−1∂

)
·
(
(c∗)−1∂

)
.

Using this decomposition, we can explicitly calculate the Casimir operator in z coordinates,

when acting on left H-invariant and right M1-invariant function.

Theorem 9. [Structure Theorem for the Casimir Operator] Let f : H\G/M1 → C. Then

in the z-coordinate system, f is only a function of (y, w), that is, the U and U variables,

and the Casimir operator acting on f has the following form:

Cf(y, w) =
1

2

(
y2∂2

y + (n+ 1)y∂y + 2∂yw +
(n− 1)w∂w

1 + yw

)
f(y, w).(4.11)

Proof. By definition of c∗ we have

Yj := ad((uum1 · · ·m`)
−1, Xj) =

d∑
i=1

c∗kiX
∗
i for i = 1, . . . , k

and

Yk+1 := ad((um1 · · ·m`)
−1, Xk+1) =

d∑
i=1

c∗(k+1)iX
∗
i

. . .

Yd := Xd =
d∑
i=1

cdiX
∗
i .
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Thus, (c∗)−1Y = X. Since our function depends only on w and y, we are only interested in

the (k + 1)th and (k + 2)th columns of (c∗)−1. We can explicitly calculate Yi depending on

which type of basis vector is Xi, then we can explicitly solve for (c∗)−1
ij . Using an inductive

argument we then have that (c∗)−1∂ has the following explicit form: Let

vM := (sin(ϕ1), cos(ϕ1) sin(ϕ2), cos(ϕ1) cos(ϕ2) sin(ϕ3), . . . , cos(ϕ1) · · · cos(ϕ`−1) sin(ϕ`))
T

(4.12)

then we have (in fact, we only need the fourth and fifth row of the below)

(c∗)−1∂ =
1

2



0(n−1)n/2

−vM∂w
1
2
vM(w2∂w − 2(1 + wy)∂y)

(y∂y − w∂w)

cos(ϕ1) . . . cos(ϕ`)∂w
1
2

cos(ϕ1) . . . cos(ϕ`)(−w2∂w + 2(1 + wy)∂y)

0n−2


.(4.13)

Let (A1, . . . , Ad) := (c∗)−1 · ∂, then our aim is to evaluate

C =
d∑
j=1

d∑
i=1

(c−1)ji∂iAj.

However, since we are considering the Casimir acting on right M1 invariant functions, we

may set the last ` coordinates equal to 0, that is

Cf(y, w) =

(
d∑
j=1

d∑
i=1

[
(c−1)ji

]
ϕ=0

[∂iAj]ϕ=0

)
f(y, w),

however [(c−1)ji]ϕ=0 = (d−1)ji where d is the matrix of coefficients defined in (4.8).

Since the d matrix is explicitly described in (4.9), and the vector (A1, . . . , Ad) is given

explicitly in (4.13), then (4.11) can be found through direct computation. �

5. Counting

We turn now to the proof of Theorem 1. For simplicity, we assume the packing is

bounded; similar methods apply for counting in regions. We also assume that the packing

is the orbit of a single sphere S1 under the action of a symmetry group Γ; in general, the

counting problem reduces to a finite sum of such [KK21, Theorem 22]. Let the sphere S1

be represented in the inversive coordinate system described in §4 by the vector v1 ∈ V . We
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begin in the same way as we did in the SL2(R) case, writing the count as

NP(T ) := # {S ∈ P | b(S) < T}

= # {v ∈ v1 · Γ | b∗(v) < T}

=
∑

γ∈Γ1\Γ

χT (γ),

where b∗ is the “bend” covector (as in (4.2)), Γ1 := Stabv1(Γ), and for g ∈ G

χT (g) :=

1 if b∗(v1 · g) < T,

0 else.
(5.1)

We observe that χT is a function on H\G/UM1, where H is the stabalizer of v1 (so that

Γ1 = Γ ∩H).

Now we automorphize χT , that is define

FT (g) :=
∑

γ∈Γ1\Γ

χT (γg).

Hence FT is left Γ-invariant and NP(T ) = FT (e). Again, rather than trying to evaluate

the discontinuous function FT at the origin, consider its inner product with a smooth

approximation of the identity. However, we want to restrict as few directions of our smooth

approximation as possible, to optimize the resulting error terms. To this end, fix an ε > 0,

and let

ψ = ψε ∈ L2(Γ1\G/M1)(5.2)

be given as follows. Let F be a fundamental domain described in z-coordinates, of

Γ1\G/M1. Then on F we let ψ be of the form ψ(z) = ψ1(x1) · · ·ψk(xk)ψU(y)ψU(w), with

all components nonnegative and unit total mass,∫
Γ1\G/M1

ψdg = 1,

and satisfying the following conditions.

For the n + 1 variables in the components H+, HA (in the notation of (4.4)) and U ,

we restrict the coefficients to ε-balls around 0. The other variables are restricted only to

compact regions of bounded size around 0. We can choose such a ψ have L2 mass bounded

by:

‖ψ‖L2(Γ1\G/M1) � ε−(n+1)/2.

Now define the function wT = wT,ε : Γ1\G→ [0, 1] by

wT (g) :=

∫
Γ1\G

χT (h)ψε(gh)dh.(5.3)

Our main counting theorem (Theorem 1) will follow from the following smooth effective

count.
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Theorem 10. Let the Laplace eigenvalues of Γ\Hn+1 be as in (1.1). Then there exist

constants ciΓ,ε for i = 0, 1, . . . , k, with c0
Γ,ε > 0, such that

ÑΓ,ε(T ) :=
∑

γ∈Γ1\Γ

wT (γ) = c0
Γ,εT

δ + c1
Γ,εT

s1 + · · ·+ ckΓ,εT
sk +O

(
1

ε(n+1)/2
T n/2 log(T )

)(5.4)

where the implied constant depends only on Γ. Moreover c0
Γ,ε = c0

Γ(1 +O(ε)), and for i ≥ 1

(if any exist), we have that ciΓ,ε � ε−(n+1)/2.

Remark. Note that this smoothed counting theorem is optimal in that the error goes all

the way to the tempered spectrum.

5.1. Proof of Theorem 1. An explicit calculation shows that the inversive coordinates

of a sphere which has been transformed by g are

(y,−(1 + wy)vTM , (1 + wy) cos(ϕ1) · · · cos(ϕ`), w(2 + wy))

where vM is the vector defined in (4.12). Thus the ‘bend radius’ (i.e the distance of the

center of the sphere to the origin multiplied by the bend) is (1 + wy). Since this distance

is necessarily bounded from above (since the packing is bounded) and since y is bounded

from below (because it controls the bend, and the packing has a largest sphere), we know

that w is bounded from above. In particular we have

Lemma 11. Let γ ∈ Γ1\Γ then |wγ| is bounded.

Now, assuming Theorem 10 we present the proof of Theorem 1.

Proof of Theorem 1. Consider

wT (γ) =

∫
Γ1\G

χT (g)ψε(γ
−1g)dg

=

∫
Γ1\G

χT (γg)ψε(g)dg.

We write γ = J (x1,γ, . . . , xk,γ, yγ, wγ, ϕ1,γ, . . . , ϕ`,γ) and note that χT is left H-invariant

and right UM1 invariant. Hence

χT (γg) = χT (u(yγ)u(wγ)m1(ϕγ)h(x)n(y)).

now we can write h as a product of one dimensional components of H from (4.4) (here, it

is convenient to change the order of the decomposition). That is, write

h(x) = h+(x+)hA(xA)h−(x−)hM(xM).

Since ψ restricts the x− and xA coordinates to balls of radius ε, we can apply adjoints

to move those factors to the left of u(yγ) and the other factors will be perturbed by an ε
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error. Then we can use left H-invariance of χT . We can do the same for the u(y) factor

which gets absorbed in the u(y) factor. Thus, we have that

χT (γg) = χT (u(yγ +O(ε))u(wγ +O(ε))m1(ϕγ +O(ε))h+(x+ +O(ε))hM(xM +O(ε))

= χT (u(yγ +O(ε))),

where the second line follows from right-M invariance, and right-H+ invariance.

Thus,

χT (γg) =

1 if yγ <
T

1+cε

0 if yγ >
T

1−cε

for some absolute constant c.

Hence, since ÑΓ,ε(T ) =
∑

Γ1\ΓwT (γ), then our count satisfies:

ÑΓ,ε(T (1− cε)) ≤ NP(T ) ≤ ÑΓ,ε(T (1 + cε))(5.5)

Now, assuming there are no other eigenvalues, we apply Theorem 10 to find:

ÑΓ,ε(T (1± ε)) = c0(1 +O(ε))T δ +O(
1

ε(n+1)/2
T n/2 log(T )).

Then choosing ε = T
2

n+3
(n/2−δ) log(T )2/(n+3) optimizes this inequality. Thus

ÑΓ,ε(T (1± ε)) = c0T δ +O(T
2

n+3
(n/2−δ)+δ log(T )

2
n+3 ).

The general case follows similarly. �

5.2. Inserting the Casimir Operator. Once again the smooth count is the inner prod-

uct of FT with an L2 function. Consider the inner product of FT with a general Ψ ∈
L2(Γ\G/M1). That is, given a function ψ on Γ1\G/M1 we automorphize it

Ψ(z) :=
∑

γ∈Γ1\Γ

ψ(γg).

Let

KT (s) :=
T sbn−s − T n−sbs

bn−s − bs
, LT (s) :=

T n−s − T s

bn−s − bs
,

while for s = n/2 + it we have

KT (s) := T n/2
sin(t log T/ log b)

sin(t log b)
, LT (s) :=

(
T

b

)n/2
sin(t log T )

sin(t log b)
.(5.6)

Again, by choosing an appropriate choice of b one can ensure that

KT (s), LT (s)�

T s if s ∈ (n/2, n],

T n/2 log T if s = n/2 + it.
(5.7)

In the SL2(R) case, we decomposed the real direction, since Γ\H was not compact in

the real direction. Analogously in the current setting, we have the group decomposition
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(Γ1\H)UUM1. Since (Γ1\H) has finite H-Haar measure, and M1 is compact, and we

have imposed a cut-off in the U -direction, we are again faced with a one dimensional non-

compact direction, the U -direction. To that end, since ∞ lies outside the limit set, from

Lemma 11 it follows that there exists an X large enough, such that

NP = FT,X(e)

where

FT,X(g) :=
∑
Γ1\Γ

χT (γg)χ̃X(γg), and

χ̃X(g) :=

1 if |bz∗(v1 · g)| < X,

0 otherwise.

where bz∗ denotes the bend center, as in (4.3). Thus, note that χ̃X is also left Γ1 invariant,

and right M1 invariant (since it depends only on the distance to the origin of the center,

not the polar coordinate angles).

Moreover, a calculation shows that, in the z-coordinates, χ̃X can be written as:

χ̃X(g) :=

1 if 1
y
−X < w < 1

y
+X,

0 otherwise.

The Difference Operator: Again, we will prove an identity in terms of KT and LT

for FT,X . To that end, consider the difference operator

GT,X := FT,X −KT (C)F1,X − LT (C)Fb,X .

By self-adjointness of C, for any Ψ ∈ L2(Γ\G/M1) we have

GT,X(Ψ) := 〈GT,X ,Ψ〉Γ\G

=

∫
Γ\G

[FT,X(g)Ψ(g)− F1,X(g)(KT (C)Ψ)(g)− Fb,X(g)(LT (C)Ψ)(g)] dg,

which we can unfold to

(5.8) GT,X(Ψ) =

∫
Γ1\G

χ̃X(g) (χT (g)Ψ(g)− χ1(g)(KT (C)Ψ)(g)− χb(g)(LT (C)Ψ)(g)) dg.

It is more convenient to work using z-coordinates describing the group G. Now fix a

fundamental domain for Γ1\G/M1, this fundamental domain can be written in coordinates

as F := PΓ1 × [0,∞) × R × [−π, π]n−1, where PΓ1 is a (finite H-volume) fundamental

domain for the action of Γ1 on H. Given a function f : G → C we abuse notation and

write f(z) = f(gz), thus if we let ρ denote density of the Haar measure, we can write (5.8)

as:

GT,X(Ψ) =

∫
F
χ̃X(y, w) (χT (y)Ψ(z)− χ1(y)(KT (C)Ψ)(z)− χb(y)(LT (C)Ψ)(z)) ρ(z)dz.
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Note that by definition χT (z) is a function of y and χ̃X(z) is a function of w (and y), for

clarity we ignore the dependence on the other variables.

Let FX := PΓ1 × [0,∞)× IX × [−π, π)n−1 where IX := [1/y −X, 1/y +X), now write

GT,X(Ψ) =

∫
FX

(χT (y)Ψ(z)− χ1(y)(KT (C)Ψ)(z)− χb(y)(LT (C)Ψ)(z)) ρ(z)dz.

By showing that GT,X(Ψ) = 0 for any choice of Ψ we will prove the following proposition

Proposition 12. For Γ and FT,X as above we have that

FT,X = KT (C)F1,X + LT (C)Fb,X(5.9)

where KT and LT are the differential operators defined in (5.6).

Once again our goal is to work on the fundamental domain of a group (rather than

working with discontinuous cut-offs). Thus we will perform the same smoothing as we did

in the SL2(R) case.

Smoothing χT : Let σ > 0 and let

χ1,σ(z) :=

1 if y < 1,

0 if y > (1 + σ),

and let χ1,σ interpolate smoothly for all values in between. Now let χT,σ(z) := χ1,σ(Ty).

Let

Gσ
T,X(Ψ) :=

∫
FX

(χT,σ(y)Ψ(z)− χ1,σ(y)(KT (C)Ψ)(z)− χb,σ(y)(LT (C)Ψ)(z)) ρ(z)dz.

Now by construction ∫
FX
|χt,σ(y)− χt(y)|2 ρ(z)dz�t,X σ

Thus by Cauchy-Schwarz we have that limσ→0G
σ
T,X(Ψ) = GT,X(Ψ). Now our goal is to

show that for any fixed ε > 0 we have Gσ
T,X(Ψ) < ε.

Periodizing and Smoothing Ψ: Let

IX,η :=

[
1

y
−X + η,

1

y
+X − η

]
.

Let Ψ̃ : G/M1 → R denote a function which agrees with Ψ on

PΓ1 × [0,∞)× IX,η

for some η > 0 to be chosen later. When x2 6∈ IX,η we impose the condition Ψ̃(1/2y−X) =

Ψ̃(1/2y) = Ψ̃(1/2y + X) for any value of the other variables, and interpolate smoothly in

between.

Using the same Cauchy-Schwarz argument as we employed in the SL2(R) case, we can

choose η such that the L2(PΓ1 × [0, 2T ]× IX × [−π, π)n−1) cost of moving from Ψ to Ψ̃ is
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less than ε. Thus, Proposition 12 follows if we can prove that

GT,X,σ(Ψ̃) = 0.(5.10)

Working on FX: Let

gσT,X(z) := χ̃X(z)(χT,σ(z)−KT (C)χ1,σ(z)− LT (C)χb,σ(z)).

Then (5.10) follows from the following lemma.

Lemma 13. For any ψ ∈ L2(FX) be independent of ϕ ∈ [−π, π)n−1 and any λ ≥ 0 we

have

〈gσT,X , ψ〉FX �λ,T,σ,X ‖(C − λ)ψ‖FX(5.11)

where C denotes the Casimir operator on L2(FX) (i.e the Casimir operator in z-coordinates).

To prove (5.11), let ψ be an arbitrary function in L2(FX), which is ϕ invariant. Now

consider∫
FX

χT,σ(y)ψ(z)ρ(z)dz =

∫ 2T

0

χT,σ(y)

∫ 1/y+X

1/y−X

∫
[−π,π)n−1

∫
PΓ1

ψ(z)ρ(z)dxdϕdwdy.

For convenience, let us change variables w 7→ w − 1/y, thus, the above integral becomes∫
FX

χT,σ(y)ψ(z)ρ(z)dz =

∫ 2T

0

χT,σ(y)

∫ X

−X

∫
[−π,π)n−1

∫
PΓ1

ψ(z)ρ̃(z)dxdϕdwdy,

where ρ̃(z) is the modified Haar measure density after changing variables. Let

f(y) :=

∫ −X
X

∫
PΓ1

∫
[−π,π)n−1

ψ(z)ρ̃(z)dxdϕdw,

and

h(y) :=

∫ X

−X

∫
PΓ1

∫
[−π,π)n−1

ρ̃(z)(C − λ)ψ(z)dxdϕdw.(5.12)

Since, as shown in Theorem 8, the density of the Haar measure decomposes into a product

of densities depending on x, one depending on ϕ and one depending on w and z, we can

use this fact to show∫
PΓ1

Cψ(x, y, w)ρH(x)dx = C
∫
PΓ1

ψ(x, y, w)ρH(x)dx.

This follows from periodicity on the boundary of FX .

Recall that the (modified) Haar measure, in z coordinates is given by |wy|n−1 ρHρM1 . If

n is odd, then the absolute value plays no role. However if n is even, we need to consider

the discontinuity at 0. Because of this, we henceforth assume the harder case, when n is

even, the other case is similar but we have fewer boundary terms.
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Using the Structure Theorem for the Casimir operator (Theorem 9)

2

∫
FX

ρ̃(z)(Cψ)(z)dz)

= −
∫ X

0

(wy)n−1

(
y2∂2

y + (n+ 1)y∂y + 2∂yw +
(n− 1)(w + 1

y
)∂w

yw

)
ψ̃(y, w)dw

+

∫ 0

−X
(wy)n−1

(
y2∂2

y + (n+ 1)y∂y + 2∂yw +
(n− 1)(w + 1

y
)∂w

yw

)
ψ̃(y, w)dw.

(5.13)

Now we use integration by parts to handle the two derivatives in w∫ X

0

(wy)n−1

(
2∂yw +

(n− 1)(w + 1/y)∂w
yw

)
ψ̃(y, w)dw

=

[
(wy)n−1

(
2∂y +

(n− 1)(w + 1/y)

yw

)
ψ̃(y, w)

]X
0

−∫ X

0

(
2(n− 1)y(wy)n−2∂y + (n− 1)(wy)n−2 + (n− 1)(n− 2)(wy)n−3(wy + 1)

)
ψ̃(y, w)dw

Thanks to our assumptions on ψ̃, when added together, we have some cancellation coming

from all the terms involving ∂w. Namely

−
∫ X

0

(wy)n−1

(
2∂yw +

(n− 1)(w + 1/y)∂w
yw

)
ψ̃(y, w)dw

+

∫ 0

−X
(wy)n−1

(
2∂yw +

(n− 1)(w + 1/y)∂w
yw

)
ψ̃(y, w)dw

=

∫ X

0

(n− 1)
(
2y(wy)n−2∂y + (wy)n−2 + (n− 2)(wy)n−3(wy + 1)

)
ψ̃(y, w)dw

−
∫ 0

−X
(n− 1)

(
2y(wy)n−2∂y + (wy)n−2 + (n− 2)(wy)n−3(wy + 1)

)
ψ̃(y, w)dw.

Returning to (5.13) we consider only the term from [0, 0 +X), we thus have

I :=

∫ X

0

(wy)n−1

(
y2∂2

y + (n+ 1)y∂y + 2∂yw +
(n− 1)(w + 1/y)∂w

yw

)
ψ̃(y, w)dw

=

∫ X

0

{
(wy)n−1

(
y2∂2

y + (n+ 1)y∂y
)
− 2(n− 1)y(wy)n−2∂y

− (n− 1)(wy)n−2 − (n− 1)(n− 2)(wy)n−3(wy + 1)

}
ψ̃(y, w)dw.

Now we can use the product rule to pull the derivatives in y to the front of the integral.

Let

f̃ :=

∫ X

0

(wy)n−1ψ̃(y, w)dw.
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Then we have that

y2∂yyf̃ = w2y2(n− 1)(n− 2)(wy)n−3 + 2(w + 1/y)y2(n− 1)(wy)n−2∂y + y2(wy)n−1∂yy.

Rearranging and inserting into I gives

I =y2∂yyf̃ +

∫ [
(wy)n−1(n+ 1)y∂y − 2(n− 1)y(wy)n−2∂y

− (n− 1)(wy)n−2 − (n− 1)(n− 2)(wy + 1)(wy)n−3

− (wy + 1)2(n− 1)(n− 2)(wy)n−3 − 2y(wy + 1)(n− 1)(wy)n−2∂y

]
ψ̃dw.

Now we can collect together some of the like terms

I = y2∂yyf̃

−
∫ [

(n− 3)y(wy)n−1∂y + (n− 1)(wy)n−1 + (n− 1)(n− 3)(wy + 1)(wy)n−2

]
ψ̃dw.

Again, rearranging the product rule implies that we can write

I = y2∂yyf̃ − (n− 3)y∂yf̃ − (n− 1)f̃ .

Putting together the two integrals, we conclude that

−y2∂yyf + (n− 3)y∂yf + (n− 1)f = h(y).(5.14)

If we write λ = s(n− s), then

− y2∂yyf + (n− 3)y∂yf + (n− 1)f = λf.

has solutions

f(y) =
ys

y
, and f(y) =

yn−s

y

As a consequence of (5.14), using the method of variation of parameters (we omit the proof

which is the same as the SL2(R)-case (see (3.15)), we have the following corollary

Theorem 14. For any s > 0, with s 6= n/2, there exist constants c1 and c2 such that:

f(y) = c1
ys

y
+ c2

yn−s

y
+
ys

y
u(y) +

yn−s

y
v(y)(5.15)

where

u(y) :=

∫ T

y

t2−s

2s− n
h(t)dt, v(y) :=

∫ T

y

ts−n+2

n− 2s
h(t)dt,

If s = n/2, then

f(y) = c1
yn/2

y
+ c2

yn/2

y
log y + u(y) + v(y) log y,(5.16)
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where the inhomogeneous terms are given by

u(y) :=

∫ T

y

−t2−n/2 log(t)h(t)

(n− 2) log(t) + 1
dt, v(y) :=

∫ T

y

t2−n/2h(t)

(n− 2) log(t) + 1
dt.

With Theorem 14 at hand, we may prove Lemma 13.

Proof of Lemma 13. We will prove the bound for the term depending on u as the same

proof applies for the term depending on v. Thus, consider∫ T

0

ys

y
u(y)dy =

∫ T

0

ys−1

∫ T

y

t2−s

2s− n
h(t)dtdy.

Integrating by parts, and applying the fundamental theorem of calculus then gives∫ T

0

ys

y
u(y)dy = c [ysu(y)]Ty=0 − c

′
∫ T

0

y2h(y)dy.

Now note that u(T ) = 0, thus:∫ T

0

ys

y
u(y)dy =

(
lim
y→0

ys
∫ T

y

t2−s

2s− n
h(t)dt

)
− c′

∫ T

0

y2h(y)dy.

Recall h(y) :=
∫ X
−X

∫
PΓ1

∫
[−π,π)n−1 ρ(z)(C − λ)ψ(z)dxdϕdw, thus the first term behaves like

limy→0 y
3 = 0. Thus∫ T

0

ys

y
u(y)dy �

∫ T

0

∫ X

−X

∫
PΓ1

∫
[−π,π)n−1

y2ρ(z)(C − λ)ψ(z)dxdϕdwdy.

Applying Cauchy-Schwarz:∫ T

0

ys

y
u(y)dy �

(∫ T

0

∫ X

−X

∫
PΓ1

∫
[−π,π)n−1

ρ(z) |(C − λ)ψ(z)|2 dxdϕdwdy

)1/2

·

(∫ T

0

∫ X

−X

∫
PΓ1

∫
[−π,π)n−1

y4ρ(z)dxdϕdwdy

)1/2

�T,X,λ ‖(C − λ)ψ(z)‖FX .

Note that, here, it is crucial that we imposed the cut-off in the w-direction. This ensures

that the second factor on the right hand side is finite. The proof for the v-term is identical.

�

Thus, working our way back up, with the same argument as in the SL2(R) setting, we

conclude the proof of Proposition 12.

5.3. Proof of Theorem 10. As for the SL2(R) case, we now return to the smooth count

with U -cutoff:

ÑΓ(T ) = 〈FT,X ,Ψ〉Γ.
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Now apply the abstract Parseval’s identity (2.2)

〈FT,X ,Ψ〉Γ = 〈F̂T,X , Ψ̂〉Spec(Γ)

= F̂T,X(λ0)Ψ̂(λ0) +

∫
Spec(Γ)\{λ0}

F̂T,X(λ)Ψ̂(λ)dν(λ).(5.17)

As with the SL2(R) case, we can apply spectral methods to extract the T and ε-dependence.

Applying the abstract spectral theorem gives

F̂T,X(λ0)Ψ̂(λ0) = 〈ProjH0
(FT,X),ProjH0

(Ψ)〉.

Then by linearity and our main identity Proposition 12 we conclude

F̂T,X(λ0)Ψ̂ε(λ0) = KT (λ0)〈ProjH0
(F1,X),ProjH0

(Ψε)〉+ LT (λ0)〈ProjH0
(Fb,X),ProjH0

(Ψε)〉

= T δ〈H,ProjH0
(Ψε)〉+O(T n/2),

where H := c1 ProjH0
(F1,X) + cb ProjH0

(Fb,X) for some constants c1, cb.

The problem remains to determine the ε dependence of the projection operator ProjH0
(Ψε).

In general, this projection can be realized in a number of ways, either as a Burger-Roblin-

type measure of Ψε (see [MO15, p. 861]), or using representation-theoretic decompositions

as in [BKS10, Vin12]. We will give a soft argument that avoids either.

We know from (5.5) that

NP
(

T

1 + cε

)
≤ ÑΓ,ε(T ) ≤ NP

(
T

1− cε

)
,

for any value of ε and any value of T . However we also know a priori (e.g., using [Kim15])

that

NP
(

T

1± cε

)
= cP

(
T

1± cε

)δ
(1 + o(1)),

as T →∞. Dividing by T δ then gives

cP

(
1

1 + cε

)δ
− o(1) ≤ 〈H,ProjH0

(Ψε)〉 ≤ cP

(
1

1− cε

)δ
+ o(1).

Now send T →∞ and Taylor expand 1
(1±cε)δ in ε, giving:

〈H,ProjH0
(Ψε)〉 = C +O(ε).

Hence

F̂T,X(λ0)Ψ̂ε(λ0) = T δc(1 +O(ε)) +O(T n/2)(5.18)

for some constant c independent of ε. (Note that this positivity argument does not apply

to the other eigenvalues. Hence with sharp cutoffs, as in Theorem 1, we do not extract

lower order terms.)
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Turning now to the remainder, after extracting the main term corresponding to λ0 we

are left with

Err :=

∫
Spec(Γ)\{λ0}

F̂T,X(λ)Ψ̂(λ)dν

=

∫
Spec(Γ)\{λ0}

(
KT (λ)F̂1,X(λ) + LT (λ)F̂b,X(λ)

)
Ψ̂(λ)dν.

Assume for simplicity that there are no other discrete eigenvalues above the base. Now

apply the abstract spectral theorem and the bounds from (5.7) to conclude that∫
Spec(Γ)\{λ0}

KT (λ)F̂1,X(λ)Ψ̂(λ)dν � T n/2 log T

∫
Spec(Γ)\{λ0}

F̂1,X(λ)Ψ̂(λ)dν.

Now apply Cauchy-Schwarz and Parseval to get

� T n/2 log T

(∫
Spec(Γ)\{λ0}

F̂1,X(λ)2dν

)1/2(∫
Spec(Γ)\{λ0}

Ψ̂(λ)2dν

)1/2

≤ T n/2 log T

(∫
Spec(Γ)

F̂1,X(λ)2dν

)1/2(∫
Spec(Γ)

Ψ̂(λ)2dν

)1/2

= T n/2 log T ‖F1,X‖Γ ‖Ψ‖Γ.

Finally, note that since ψε is normalized to have unit L1-mass, we have that ‖Ψ‖Γ �
ε−(n+1)/2. In the case of other eigenvalues, we replace the bound T n/2 log T above with T s1 .

This completes the proof of Theorem 10. �
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