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Abstract

Let m ≥ 3, we prove that (αnθ mod 1)n>0 has Poissonian m-point correlation for all α > 0,
provided θ < θm, where θm is an explicit bound which goes to 0 as m increases. This work builds on
the method developed in Lutsko-Sourmelidis-Technau (2021), and introduces a new combinatorial
argument for higher correlation levels, and new Fourier analytic techniques. A key point is to
introduce an ‘extra’ frequency variable to de-correlate the sequence variables and to eventually
exploit a repulsion principle for oscillatory integrals. Presently, this is the only positive result
showing that the m-point correlation is Poissonian for such sequences.

1 Introduction

In the following, let m ≥ 2 be an integer, and let f ∈ C∞c (Rm−1) be a compactly supported function
which can be thought of as a stand-in for the characteristic function of a Cartesian products of compact
intervals in Rm−1. Let ‖ · ‖ be the distance to the nearest integer, and [N ] := {1, . . . , N} where N ≥ 1

is a large parameter which is taken to ∞. Given a sequence (x(n)) = (x(n))n>0 ⊆ R/Z we define its
m-point correlation, at time N , to be

R(m)(N, f) :=
1

N

∗∑
n∈[1,N ]m

f(N‖x(n1)− x(n2)‖, N‖x(n2)− x(n3)‖, . . . , N‖x(nm−1)− x(nm)‖), (1.1)

where
∗∑

denotes a sum over distinct m-tuples. Thus the m-point correlation measures how correlated

points are on the scale of the average gap between neighboring points (which is N−1). We say (x(n))

has Poissonian m-point correlation if

lim
N→∞

R(m)(N, f) =

∫
Rm−1

f(x)dx =: E (f) for any f ∈ C∞c (Rm−1). (1.2)

That is, if the m-point correlation converges to the expected value if the sequence was uniformly
distributed on the unit interval. The key object in this paper are the dilated monomial sequences:

x(n) := αnθ mod 1. (1.3)

The following is our main result.

Theorem 1.1. For any m ≥ 3 the sequence (αnθ mod 1)n>0 has Poissonian m-point correlation for
any 0 < θ < 1/(m2 +m− 1), and any α > 0.

Remark. The authors and Sourmelidis [LST21] recently established that (1.3) has Poissonian 2-point
correlation for all θ < 14/41 and all α > 0.

One of the reasons these sequences became popular in the 20th century is the connection to the
harmonic oscillator when θ = 2. However, recently this interest has been extend to a general theory of
monomial sequences, see for instance a lecture of Marklof [Mar20] who presented numerical evidence
for the Poissonian local statistics of x(n) for small values of θ. Our result is the first rigorous and
explicit result in this direction and lays the foundation for a theory of the statistics of slowly growing
sequences.

As m increases, the range of θ decreases. This is to be expected since, for example, the sequence
(n1/m)n>0 does not have Poissonian m-point correlations since the mth powers accumulate at 0. The
precise range of θ in Theorem 1.1 comes from estimates on exponential sums and oscillatory integrals.
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If we could achieve square root cancellation in the sums which arise, we would be able to prove Theorem
1.1 for θ < 1/m. Theorem 1.1 is thus far from optimal. A more careful analysis using these methods
could possibly yield an improved range of θ, but not going beyond θ < 1/m without significant new
ideas. This motivates the following conjecture:

Conjecture 1.2. For any m ≥ 2 the sequence (αnθ mod 1)n>0 has Poissonian m-point correlation for
any 0 < θ < 1/m and any α > 0.

Again, we emphasize that the discrepancy between Conjecture 1.2 and Theorem 1.1 is technical in
nature and derives from suboptimal exponential sum bounds. The only real obstruction for the m-point
correlation is the sequence (n1/m mod 1)n>0 where the mth-powers accumulate at 0 and thus prevent
Poissonian correlations. However it should be noted that El-Baz, Marklof and Vinogradov have shown
that (

√
n mod 1)n>0 does have Poissonian pair correlation, if one removes all those n which are squares.

While xn := log(n) mod 1 does not have Poissonian gap distribution, our main theorem motivates
the idea that a sequence growing faster than log(n) and slower than any power of n appears to have
Poissonian local statistics. In fact, there has been some evidence supporting the idea that the sequence
log(n)A has Poissonian gap statistics for A > 1, see [MS13], who showed that the gap distribution of
the sequence logb(n) mod 1 converges to something other than the exponential distribution. However,
if one then applies the second limit b→ 1, the limiting gap distributions do converge to the exponential
distribution. Thus supporting the idea that log(n)A would have Poissonian gap distribution. We plan
to address this question in a forthcoming paper using the methods developed in the present paper.

Combinatorial Argument: One of the key steps in our proof is to complete the sums defining
the m-point correlation, that is to consider

1

N

∑
n∈[1,N ]m

f(N‖x(n1)− x(n2)‖, N‖x(n2)− x(n3)‖, . . . , N‖x(nm−1)− x(nm)‖). (1.4)

Then, in Section 3, using a combinatorial argument, we are able to show that if this sum converges to
a specified target, then the m-point correlation is indeed Poissonian. Then we show that the terms in
this target correspond exactly to certain 0 Fourier coefficients. This surprising correspondence is both
crucial in our argument, and of significant value to more general sequences as it allows one to remove
the distinctness condition in the m-point correlation function. Boca and Radziwi l l[BR20, p. 6] noted
the difficulty of this problem in a different setting, which they avoided by taking f supported away
from the origin. A similar, but different, combinatorial argument was previously done in [RS96] for a
different distribution. Thus Section 3 is of independent interest for more general sequences. However
the statement relies on a complex combinatorial argument, therefore we do not summarize the results
here.

1.1 History

In 1998 Rudnick and Sarnak [RS98], showed that the 2-point correlation (or pair correlation) of (1.3)
is Poissonian for any integer θ ≥ 2, and (Lebesgue) almost every α > 0. Two decades later [AEBM21]
and [RT21] proved the same statement for all non-integer θ > 1, and 0 < θ < 1 respectively. However,
excluding these metric results, very little is known about sequences on the unit interval growing with
polynomial rate.

Proving deterministic results can often be facilitated by arithmetic structure. For example, the
renormalized spacings of quadratic residues modulo q have been investigated by Kurlberg and Rudnick
[KR99] who showed that the appropriate m-point correlation functions in this setting are all Poissonian
as the number of prime factors of q tends to infinity. We refer to Boca and Zaharescu [BZ00] for a
theory of the pair correlation function of quadratic polynomials in finite fields. Moreover there has
been some recent work by Kurlberg and Lester on the spacing statistics of lattice points on circles,
where again, the arithmetic structure plays an important role [KL21].

When working on the unit interval, for sequences of the form xn = αnθ mod 1, the only explicit
result concerning correlations is due to El-Baz, Marklof, and Vinogradov [EBMV15] who used the
dynamics of theta-sums to show that

(
√
n mod 1)n≥1, not a square (1.5)

has Poissonian 2-point correlation. This is somewhat surprising since Elkies and McMullen [EM04] had
established, via quantitative non-divergence in the space of lattices, that the gap distribution of (1.5)
is not Poissonian.

2



For m ≥ 3 there are hardly any results on the probabilistic theory for m-point correlation functions
and even fewer deterministic results. An exception is the work of Yesha and the second named author
[TY20], who showed that (nα mod 1)n has Poissonian m-point correlation, for almost all α > 4m2 −
4m−1. Moreover, for lacunary sequences we refer to Rudnick and Zaharescu [RZ99, RZ02], for dilations
of lacunary integer sequences; and Chaubey and Yesha [CY21] where this is extended to dilations of
real-valued sequences.

Similarly, Rudnick, Sarnak, and Zaharescu [RSZ01], and Fassina, Kim, and Zaharescu [FKZ21] also
studied the the m-point correlation functions along lacunary sub-sequences of N .

1.2 Plan of Paper

The proof of Theorem 1.1 is roughly the same for all values of m. First, this will be an inductive ar-
gument: assume the sequence has k-point correlations for all k < m (note that the range of θ decreases
as m increases). Then we argue in roughly three steps.

Step 1: First we relate the problem to the mth-moment of a random variable. This will effectively
decorrelate the sequence elements, at the cost of introducing a new frequency variable. Then, following
the example of [RS96] we complete the sums to aid the analysis. As a result, we need to do some
combinatorial book-keeping of adding and subtracting terms to isolate a ’target’ main term. This
combinatorial argument, which allows us to complete the sum, is of interest for any sequence. As such
Section 3 is written for a general sequence.

Step 2: Using various smooth partitions of unity and approximations to indicator functions, we Fourier
expand the counting problem. This reduces the problem to an asymptotic evaluation of the Lm([0, 1])

-norm of a two dimensional exponential sum. We use a variant of van der Corput’s B-process (Poisson
summation plus a stationary phase expansion) to shorten the ranges of the exponential sums in the
mth-power. Then we apply the B-process a second time in a different variable to maximize the saving.
When running the B-process some care is needed since we need rather good error terms – somewhat
better than one finds in the classical literature. This forces us to do the B-process by hand, and to use
a second order, rather than a first order, expansion of the arising oscillatory integrals. If we stop here,
then our bound on the error term is of size O(Nmθ).

Step 3: Next we expand the Lm([0, 1])-norm, and estimate oscillatory integrals of the shape∫ 1

0
e(c
∑
l≤L
±rl(hl − s)1/θ)ds,

where c ∈ C is a constant only depending on α, and θ, and rl, hl ≈ Nθ for l ≤ L ≤ m. The arising main
term comes from the regime where the phase function∑

l≤L
±rl(hl − s)1/θ

vanishes identically. The remaining terms, due to the polynomial nature of the phase function, admit
a non-trivial bound. We show that such a phase function has the property that, at any given point
s ∈ [0, 1], at least one of the first m-derivatives is large and thus we conclude by applying a localised
version of van der Corput’s lemma, which allows us to bound the error term by o(1) provided θ is in
the given range.

Notation: Throughout, we use the usual Bachmann–Landau notation: for functions f, g : X → R,
defined on some set X, we write f � g (or f = O(g)) to denote that there exists a constant C > 0 such
that |f(x)| ≤ C|g(x)| for all x ∈ X. Moreover let f � g denote f � g and g � f , and let f = o(g) denote

that f(x)
g(x)

→ 0.

Given a Schwartz function f : Rm → R let f̂ denote the m-dimensional Fourier transform:

f̂(k) :=

∫
Rm

f(x)e(−x · k)dx.

Here, and throughout we let e(x) := e2πix.
All of the sums which appear range over integers, in the indicated interval. We will frequently be
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taking sums over multiple variables, thus if u is an m-dimensional vector, for brevity, we write∑
k∈[f(u),g(u))

F (k) =
∑

k1∈[f(u1),g(u1))

· · ·
∑

km∈[f(um),g(um))

F (k).

Moreover, all Lp norms are taken on [0, 1] with respect to Lebesgue measure. Let

Z∗ := Z \ {0}.

As α, θ, and f are considered fixed, we suppress any dependence in the implied constants. Moreover,
for ease of notation, ε > 0 may vary from line to line by a bounded constant. Further, we will frequently
encounter the exponent

Θ :=
1

1− θ .

2 Preliminaries

The following stationary phase principle is derived from the work of Blomer, Khan and Young [BKY13,
Proposition 8.2], is a key technical device for us.

Lemma 2.1 (Stationary Phase Lemma). Let Φ and Ψ be smooth, real valued functions defined on a
compact interval [a, b]. Let Ψ(a) = Ψ(b) = 0. Suppose there exists constants ΛΦ,ΩΨ,ΩΦ ≥ 3 so that

Φ(j)(x)� ΛΦ

ΩjΦ

, Ψ(j)(x)� 1

ΩjΨ

and Φ(2)(x)� ΛΦ

Ω2
Φ

(2.1)

for all j = 0, . . . , 4 and all x ∈ [a, b]. If Φ′(x0) = 0 for a unique x0 ∈ [a, b], and if Φ(2)(x) > 0, then∫ b

a
e(Φ(x))Ψ(x) dx =

e(Φ(x0) + 1/8)√
|Φ′′(x0)|

Ψ(x0) +O

(
ΩΦ

Λ
3/2+O(ε)
Φ

)
,

provided ΩΦ/ΩΨ � log ΩΦ. If instead Φ(2)(x) < 0 on [a, b] then the same equation holds with e(1/8)

replaced by e(−1/8).

Moreover, we also need the following version of van der Corput’s lemma ([Ste93, Ch. VIII, Prop. 2]).

Lemma 2.2 (van der Corput’s lemma). Let [c, d] be a compact interval. Let Φ,Ψ : [c, d]→ R be smooth
functions. Assume Φ′′ does not change sign on [c, d] and that for some i ≥ 1 and Λ > 0 the bound

|Φ(i)(x)| ≥ Λ

holds for all x ∈ [c, d]. Then∫ d

c
e(Φ(x))Ψ(x) dx�

(
|Ψ(d)|+

∫ d

c
|Ψ′(x)| dx

)
Λ−1/i

where the implied constant depends only on i.

3 Combinatorial Completion

To begin with, we setup the problem for the triple correlations, as the general setup is rather more
complicated. The key insight in both cases is the following: using a well-known trick (see, for example,
[Mar07] for the pair correlation) one can express the completed m-point correlation as the mth moment
of a particular random variable. In so doing, we effectively de-correlate the sequence elements, at
the cost of introducing a new variable, and the benefit of introducing an oscillatory integral. This de-
correlation will prove crucial, as it allows us to apply one-dimensional techniques without accumulating
error terms. Since this process has applications to more general sequences, in the current section, let
(y(n))n>0 be a sequence on R>0 and let x(n) := y(n) mod 1.

Without using this trick, one could hope to apply multi-dimensional stationary phase arguments in
the same way. However, the size of the determinant of the Hessian is difficult to understand and one
needs to contend with the accumulation of error terms.
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3.1 Setup of the Problem: Triple Correlation

Assume the sequence (x(n)) has Poissonian pair correlations. To access the triple correlation, it is more
convenient to work with the following random variable. Let f be a C∞c (R) function, and define

SN (s) = SN :=
∑
n∈[N ]

∑
k∈Z

f(N(y(n) + k + s)).

Note that if f was the indicator function of an interval I, then SN would count the number of points
in (xn)n≤N which land in the shifted interval I/N + s. Now consider the third moment of SN . That is
(assuming for simplicity f ≥ 0)

M(3)(N) :=

∫ 1

0
S3
N (s) ds

=

∫ 1

0

∑
n∈[N ]3

∑
k∈Z3

f(N(y(n1) + k1 + s))f(N(y(n2) + k2 + s))f(N(y(n3) + k3 + s))ds.

Moving the n, k1, k2 sum outside of the integral and changing variables s 7→ (N−1s− y(n3)) yields (for
N large enough)

M(3)(N) =
1

N

∫
R

∑
n∈[N ]3

∑
k∈Z3

f(N(y(n1)− y(n3) + k1 + s))f(N(y(n2)− y(n3) + k2 + s))f(Nk3 + s)ds

=
1

N

∑
n∈[N ]3

∑
k∈Z2

∫
R
f(N(y(n1)− y(n3) + k1) + s)f(N(y(n2)− y(n3) + k2) + s)f(s)ds

=
1

N

∑
n∈[N ]3

∑
k∈Z2

F (N(y(n1)− y(n3) + k1), N(y(n2)− y(n3) + k2)) , (3.1)

where F (x, y) :=
∫
R f(x+ s)f(y + s)f(s) ds. That is, by considering the third moment of SN , we recover

the (completed) triple correlation of F .
If the sequence x(n) had Poissonian triple correlations then:

1

N

∗∑
n∈[N ]3

∑
k∈Z2

F (N(y(n1)− y(n3) + k1), N(y(n2)− y(n3) + k2))→
∫
R2
F (x, y) dxdy = E (f)3 .

Now, if n1 = n3 6= n2, then by inspection of (3.1), and the compactness of f , we recover the pair
correlation of F (0, x), which, by the assumption that (x(n)) has Poissonian pair correlations, converges
to E (F (0, x)) = E (f)E(f2). Moreover if n1 = n2 = n3, we have the trivial sum F (0, 0) = E(f3). From
here, we conclude that, (x(n)) has Poissonian triple correlations if and only if

M(3)(N)→ E (f)3 + 3E (f)E(f2) + E(f3), (3.2)

as N →∞.
With that target in mind, first we apply Poisson summation to the sums over ni, to see that

M(3)(N) =
1

N3

∫ 1

0

∑
n∈[N ]3

∑
k∈Z3

f̂
(k1

N

)
f̂
(k2

N

)
f̂
(k3

N

)
e(k1y(n1) + k2y(n2) + k3y(n3) + (k1 + k2 + k3)s) ds.

Now suppose k3 = 0, then we obtain

E (f)
1

N2

∫ 1

0

∑
n∈[N ]2

∑
k∈Z2

f̂
(k1

N

)
f̂
(k2

N

)
e(k1y(n1) + k2y(n2) + (k1 + k2)s) ds,

which is exactly E (f) times the second moment of SN . Therefore, this converges to E (f)E(f2)+E (f)3.
Thus, by symmetry

M(3)(N) = E(N) + P(N) + o(1)

where P(N) → 3E (f)E(f2) + E (f)3 as N → ∞ (the term E (f)3 comes from k1 = k2 = k3 = 0, and is
thus only counted once), and where

E(N) :=
1

N3

∫ 1

0

∑
n∈[N ]3

∑
k∈(Z∗)3

f̂
( k

N

)
e(k · y(n) + k · 1s) ds,

here for the sake of notation, we write f̂(k) := f̂(k1)f̂(k2)f̂(k3) and let y(n) = (y(n1), y(n2), y(n3)). The
remaining goal (for the triple correlation) is to show E(N) converges to E (f3) as N →∞.
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3.2 Combinatorial Preparations

This process of completing the m-point correlation and then extracting terms to isolate a target is more
complicated when m > 3, and involves a complicated combinatorial argument. To ease the argument
we first fix some notation.

Given the set [m], let P be a partition of {1, . . . ,m}. Let n ∈ Zm, then we say n is P-distinct, if
ni = nj whenever i and j belong to the same partition element, and otherwise, ni 6= nj . For example if
m = 6 and P = {{1, 3}, {4}, {2, 5, 6}}, then n is P-distinct if and only if it is of the form n = (a, b, a, c, b, b)

for some distinct integers a 6= b 6= c. Given a partition P of {1, . . . ,m}, and a vector n ∈ Zm, let

χP (n) :=

{
1 if n is P-distinct

0 otherwise.
(3.3)

Moreover, given a partition P of [m], we say that j ∈ [m] is isolated if j belongs to a partition element of
size 1. A partition is called non-isolating if no element is isolated (and otherwise we say it is isolating).
For our example P = {{1, 3}, {4}, {2, 5, 6}} we have that 4 is isolated, and thus P is isolating.

3.3 Setup of the Problem: m-point Correlation

For the m-point correlation, we proceed in the same way as we did for the triple correlation. First,
assume that for k ≤ m− 1 the k-point correlation is Poissonian. Now consider the mth moment of SN

M(m)(N) :=

∫ 1

0
SN (s)mds

=

∫ 1

0

∑
n∈[N ]m

∑
k∈Zm

(f(N(y(n1) + k1 + s)) · · · f(N(y(nm) + km + s))) ds

=

∫
R

 ∑
n∈[N ]m

∑
k∈Zm−1

(f(N(y(n1) + k1 + s)) · · · f(N(y(nm−1) + km−1 + s))f(N(y(nm) + s)))

ds.

Next, we move the n, k1, . . . , km−1 summation outside of the integral and thereafter change variables
via s 7→ N−1(s− (km + y(nm))). As a result, we see that M(m)(N) equals

1

N

∑
n∈[N ]m

∑
k∈Zm−1

(∫
R

(f(N(y(n1)− y(nm) + k1) + s) · · · f(N(y(nm−1)− y(nm) + km−1) + s)f(s)) ds

)

=
1

N

∑
n∈[N ]m

∑
k∈Zm−1

F (N(y(n1)− y(n2) + k1), N(y(n2)− y(n3) + k2), . . . N(y(nm−1)− y(nm) + km−1)) ,

where

F (z1, z2, . . . , zm−1) :=

∫
R
f(s)f(z1 + z2 + · · ·+ zm−1 + s)f(z2 + · · ·+ zm−1 + s) . . . f(zm−1 + s) ds.

Note that if f ∈ C∞c (Rm) then F ∈ C∞c (Rm−1). The last line is simply the completed m-point correlation
of F . Hence our goal is to show that, if we replace the sum over n by the sum over n with distinct
entries, then this converges to E (F ) = E (f)m.

First, let us understand what we have added back in by completing the sum over n, this will then
allow us to write down a ’target’ which will provide the desired convergence (for the triple correlation
this target was E(f3)). Consider

M(m)(N) =

∫ 1

0

∑
n∈[N ]m

∑
k∈Zm

(f(N(y(n1) + k1 + s)) · · · f(N(y(nm) + km + s))) ds (3.4)

and apply Poisson summation to each of the sums in ki, giving

M(m)(N) =
1

Nm

∫ 1

0

∑
n∈[N ]m

∑
k∈Zm

f̂
( k

N

)
e(k · y(n) + k · 1s)ds, (3.5)

where y(n) := (y(n1), . . . , y(nm). The key insight which motivates the proceeding argument is that if in
(3.4) we have that ni is distinct from all other nj , then the term corresponding to this case in (3.5)
will come from ki = 0.
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To access this correspondence, in (3.4), let us further decompose the sum over n (recall the definition
of χP (3.3))

M(m)(N) =
∑
P

∫ 1

0

∑
n∈[N ]m

χP (n)
∑

k∈Zm
(f(N(y(n1) + k1 + s)) · · · f(N(y(nm) + km + s))) ds

where, the sum over P is over distinct partitions of {1, . . . ,m}. Clearly, the m-point correlation corre-
sponds to the trivial partition P0 := {{1}, {2}, . . . , {m}}. All of the other terms come from completing
the sum. Given a partition P, let

MP (N) :=

∫ 1

0

∑
n∈[N ]m

χP (n)
∑

k∈Zm
(f(N(y(n1) + k1 + s)) · · · f(N(y(nm) + km + s))) ds.

Now consider the sum (3.5), and perform a decomposition on the k variable:

M(m)(N) = E (f)m +

m∑
j=2

(
m

m− j

)
f̂(0)m−j

1

Nj

∫ 1

0

∑
n∈[N ]j

∑
k∈(Z∗)j

f̂
( k

N

)
e(y(n) · k + k · 1s)ds,

that is, we fix a j and choose m− j of the ki components to be equal to 0. Note that j cannot be equal
to 1 since the integral in s forces k1 + · · ·+ km = 0, therefore we cannot have only one ki 6= 0. Let

Kj(N) :=

(
m

m− j

)
f̂(0)m−j

1

Nj

∫ 1

0

∑
n∈[N ]j

∑
k∈(Z∗)j

f̂
( k

N

)
e(k · y(n) + k · 1s)ds

Note that K0(N) := f̂ (0)m = E (f)m.
The following proposition is enough to prove Theorem 1.1

Proposition 3.1. Fix j ∈ {0, 2, 3, . . . ,m} we have that

lim
N→∞

Kj(N) = lim
N→∞

∑
P

m−j iso.

MP (N), (3.6)

where the sum ranges over the partitions P with m− j many isolated points.

This is enough to prove Theorem 1.1 since we have that the m-point correlation is given by

MP0
(N) =M(m)(N)−

∑
P6=P0

MP (N)

=
∑

j∈{0,2,3,...,m}
Kj(N)−

m∑
j=2

∑
P

m−j iso.

MP (N)

= K0(N) = E (f)m

(note that it is impossible to have all but 1 coordinate be isolated, since a non-isolated coordinate must
be in a partition element with another non-isolated coordinate).

In fact, it is enough to restrict to non-isolating partitions. Let Pm denote the set of non-isolating
partitions of [m].

Lemma 3.2. We have that

lim
N→∞

Km(N) = lim
N→∞

∑
P∈Pm

MP (N). (3.7)

The proof of Lemma 3.2 is the content of Section 4. Let us assume it is true for the time being,
and show that Proposition 3.1 follows.

Proof that Lemma 3.2 implies Proposition 3.1. The proof for m = 3 is clear from Subsection 3.1. Take
m > 3 and assume Lemma 3.2 holds for all values of the correlation level less than, or equal to m.
Assume j < m and consider

Kj(N) =

(
m

m− j

)
f̂(0)m−j

1

Nj

∫ 1

0

∑
n∈[N ]j

∑
k∈(Z∗)j

f̂
( k

N

)
e(k · y(n) + k · 1s)ds,
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we can use Lemma 3.1 for m = j to deduce that

lim
N→∞

Kj(N) =

(
m

m− j

)
E (f)m−j

∑
P∈Pj

lim
N→∞

MP (N). (3.8)

It remains to prove (3.7), or equivalently

lim
N→∞

E(N) =
∑
P∈Pm

E
(
f |P1|

)
· · ·E

(
f |Pd|

)
. (3.9)

where we have labeled the partition P = (P1, P2, . . . , Pd), and |Pi| is the size of Pi, and where

E(N) :=
1

Nm

∫ 1

0

∑
n∈[N ]m

∑
k∈(Z∗)m

f̂

(
k

N

)
e(αk · nθ + k · 1s)ds.

The remainder of the paper is devoted to proving (3.9).

3.4 Dyadic Decomposition

It is convenient to decompose the sums over n and k into dyadic ranges in a smooth manner. Given
N , we let Q > 1 be the unique integer with eQ ≤ N < eQ+1. Now, we describe a smooth partition of
unity which approximated the indicator function of [1, N ]. Strictly speaking, these partitions depend
on Q, however we suppress it from the notation. Furthermore, since we want asymptotics of M(m)(N),
we need to take a bit of care at the right end point of [1, N ], a tighter than dyadic decomposition is
needed. Let us make this precise. For 0 ≤ q < Q we let Nq denote a smooth function for which

supp(Nq) ⊂ [eq/2, 2eq)

and such that Nq(x) + Nq+1(x) = 1 for x between 2eq−1 and eq+2/2. Now for q ≥ Q we let Nq form a
smooth partition of unity for which

2Q−1∑
q=0

Nq(x) =

{
1 if 1 < x < eQ

0 if x < 1/2 or x > N + 3N
log(N)

, and

supp(Nq) ⊂

[
eQ

2
+ (q −Q)

eQ

2Q
,
eQ

Q
+ (3 + q −Q)

eQ

2Q

)
.

Let ‖ · ‖∞ denote the maximum norm on R. We impose the following condition on the derivatives:

‖N(t)
q ‖∞ �

{
e−qt for q < Q

(eQ/Q)−t for Q < q,
(3.10)

for t ≤ 4. Thus

E(N) ≤
∫ 1

0

(
1

N

2Q−1∑
q=0

∑
n∈Z

Nq(n)
∑
k 6=0

f̂

(
k

N

)
e(kαnθ + ks)

)m
ds. (3.11)

A similar lower bound can also be achieved by omitting some terms from the partition.
We similarly decompose the k sums, although thanks to the decay of Fourier transforms, we do not

need to worry about the large k values. Let Ku be a smooth function such that
U∑

u=−U
Ku(k) =

{
1 if |k| ∈ [1, N1+ε)

0 if |k| < 1/2 or N1+2ε,

and the symmetry K−u(k) = Ku(−k) holds true for all u, k > 0. Additionally, we require

supp(Ku) = [eu/2, 2eu) if u ≥ 0 , and

‖K(t)
u ‖∞ � e−|u|t, for all 1 ≤ t ≤ 4.

Therefore a central role is played by the smoothed exponential sums

Eq,u(s) :=
1

N

∑
k∈Z

Ku(k)f̂
( k
N

)
e(ks)

∑
n∈Z

Nq(n)e(kαnθ). (3.12)
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Notice that (3.11) and the rapid decay of f̂ imply

E(N)�
∥∥∥∥ U∑
u=−U

2Q−1∑
q=0

Eq,u
∥∥∥∥m
Lm

+ o(1).

Now write

F(N) :=
1

Nm

2Q−1∑
q=0

U∑
u=−U

∑
k,n∈Zm

Ku(k)Nq(n)

∫ 1

0
f̂
( k

N

)
e(αk · nθ + k · 1s) ds,

where N(n) := N(n1)N(n2) · · ·N(nm). Our goal will be to establish that F(N) = E(fm) + o(1). Then,
since we can establish the same asymptotic for the lower bound, we may conclude the asymptotic for
E(N). Since the details are identical, we will only focus on F(N).

Fixing, q, and u, we let

Fq,u(N) =
1

Nm

∫ 1

0

∑
n,k∈Zm

Nq(n)Ku(k)f̂
( k

N

)
e(αk · nθ + k · 1s)ds.

Remark. In the proceeding sections, we will fix q and u. Because of the way we have defined Nq, this
implies two cases: q < Q and Q < q. The only real difference in these two cases are the bounds in
(3.10), which differ by a factor of Q = log(N). To keep the notation simple, we will assume we have
q < Q and work with the first bound. In practice the logarithmic correction does not affect any of the
results or proofs

4 Applying the B-process

Fix a small δ > 0. We say (u, q) ∈ [N1+ε]× [2Q] is degenerate if either one of the following holds

αθe|u|+(θ−1)q < 1/10, or q ≤ δQ.

Otherwise (u, q) is called non-degenerate. Let G (N) denote the set of all non-degenerate pairs (u, q). In
this section it is enough to suppose that u > 0 (and therefore k > 0). Next, we show that degenerate
(u, q) are negligible. If αθeu+(θ−1)q < 1/10, then the Kusmin–Landau estimate (see [IK04, Corollary
8.11]) implies ∑

n∈Z
Nq(n)e(kαnθ)� 1

ke(θ−1)q
,

and hence

‖Eq,u‖∞ �
1

N

∑
k�eu

e(1−θ)q

k
� e(1−θ)q

N
u� N−θ+ε.

Now suppose q ≤ δQ. Expanding the mth-power, evaluating the s-integral and trivial estimation yield

‖Eq,u‖mLm �
1

Nm
#{k1, . . . , km � eu : k1 + · · ·+ km = 0}Nmδ � Nmδ−1+ε.

The upshot is that there exists a constant ρ = ρ(θ) > 0 so that∥∥∥∥ ∑
(u,q)∈[N1+ε]×[2Q]\G (N)

Eq,u
∥∥∥∥m
Lm
� N−ρ,

and the triangle inequality implies

F(N) =

∥∥∥∥ ∑
(u,q)∈G (N)

Eq,u
∥∥∥∥m
Lm

+O(N−ρ). (4.1)

4.1 First application of the B-Process

Now we are ready to apply the B-process to shorten the n-summation in Eq,u(s). To that end, assume
k > 0 and let

φ(k, r) := βkΘr1−Θ,

where

β := αΘ(θΘ−1 − θΘ),
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note that β < 0, and thus we will flip the sign of the phase function by applying the B-process.
To simplify the analysis of signs in the two different cases u > 0 and u < 0, we make the following
observation. We can suppose that f is an even function; thus f̂ is even and real-valued. Hence,

Eq,−u(s) = Eq,u(s) (4.2)

holds for all s ∈ R which reduces the discussion of the case u < 0 to the case u > 0. The next lemma
states that Eq,u is approximated suitably well by

E(B)
q,u (s) :=

c1e(−1/8)

N

∑
k≥0

Ku(k)f̂
( k
N

)
e(ks)

∑
r≥0

Nq((αθk/r)
Θ)

k
Θ
2

r
Θ+1

2

e(φ(k, r)),

where

c1 :=
√

Θ(αθ)Θ.

Lemma 4.1. If u > 0, then ‖Eq,u − E(B)
q,u ‖∞ = O(N−ε) uniformly for all non-degenerate (u, q) ∈ G (N).

Proof. Fix k � eu. Let [a, b] := supp(Nq), Φr(x) := kαxθ − rx, and m(r) := min{|Φ′r(x)| : x ∈ [a, b]}. By
Poisson summation and partial integration,∑

n∈Z
Nq(n)e(kαnθ) =

∑
r∈Z

∫ ∞
−∞

Nq(x)e(Φr(x)) dx = M(k) +O(N−100 + Err(k)),

where M(k) (resp. Err(k)) gathers the contribution of all r ∈ Z with m(r) = 0 (resp. of 0 < m(r) < Nε).
Next, we evaluate M(k). Taking Ψ(x) := Nq(x),ΛΦr := eu+qθ, and ΩΦr = ΩΨ := eq, Lemma 2.1
applies. The unique critical point xr of Φr is given by xr := (αθk/r)Θ. Using 1 + θΘ = Θ shows that
Φr(xr) = φ(k, r) and ∣∣Φ′′r (xr)

∣∣ = αkθ(θ − 1)

(
αθk

r

)(θ−2)Θ

= c−2
1
rΘ+1

kΘ
.

To ease notation, Φ(x) := Φr(x). Since (u, q) is non-degenerate, ΛΦ/ΩΦ = eu+(θ−1)q > 1/(10αθ). Thus

M(k) = c1e(−1/8)
∑
r∈Z

Nq (k, r) e(φ(k, r)) +O
(
Λ
−1/2+O(ε)
Φ

)
. (4.3)

To bound Err(k), notice m(r) = min(|Φ′r(a)|, |Φ′r(b)|). Hence there are O(Nε) many r with 0 < m(r) < Nε.
By swapping a and b, if needed, we have m(r) = |Φ′r(a)| ≥ ‖αθaθ−1k‖. Lemma 2.2 (for i = 1, 2) yields∫ ∞

−∞
Ψ(x)e(Φr(x)) dx� min

(
1

m(r)
,

1√
eu+q(θ−2)

)
, thus

Err(k)� Nε min

(
1

‖αθaθ−1k‖
,

1√
eu+q(θ−2)

)
.

Next we observe that whenever ω,Ω > 0 satisfy 0 < 10ω < Ω < 1/10, then∑
k�eu

min

(
1

‖ωk‖ ,
1

Ω

)
� ueu.

Here, we take ω := αθaθ−1 and Ω := e
u+q(θ−2)

2 . Combining the previous two bounds implies∑
k�eu

Err(k) = O(N1−10ε), provided u < (1− 10ε) logN. (4.4)

On the other hand, suppose u ≥ (1− 10ε) logN . The mean value theorem gives us the lower bound
Φ′(a+a1−θ+16ε)−Φ′(a)� ka−1+16ε � N4ε. Thus, by monotonicity, Φ′(x)� N4ε for x ∈ [a+a1−θ+16ε, b].
Due to (3.10), we infer Ψ(a+ a1−θ+16ε)� e−q(θ−16ε). Hence∫ ∞

−∞
Ψ(x)e(Φr(x)) dx�

∫ a+a1−θ+16ε

a
Ψ(x)e(Φr(x)) dx+N−3ε

� N−2ε
(

min

(
1

‖αθaθ−1k‖
,

1√
eu+q(θ−2)

)
+ 1

)
.

Arguing as before, we conclude∑
k�eu

Err(k) = O(N1−ε), provided (1− 10ε) logN ≤ u� logN. (4.5)

The proof is completed by summing (4.3), (4.4), and (4.5) against N−1Ku(k)f̂(k/N)e(ks) for k ≥ 0.
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4.2 Second Application of the B-Process

Next we apply the B-process to shorten k-summation within E(B)
q,u . To this end, define (for u > 0)

E(BB)
q,u (s) :=

c1
N

∑
r≥0

∑
h≥0

f̂
( µ
N

)
Nq(r, h)Ku(µ)

µΘ/2√
φµµ(µ, r)

e(c(h− s)1/θr)

where

φµµ(µ, r) :=
∂2

∂h2
φ(h, r)

∣∣∣
h=µ

, Nq(h, s) := Nq((αθc0(h− s)1/(Θ−1))Θ),

µ := µ(h, r, s) := c0r(h− s)1/(Θ−1)

(4.6)

and where the two constants c, c0, depend only on α, and θ but do not play a role in what follows.
Then we have the following lemma

Lemma 4.2. If u > 0, then ‖E(BB)
q,u −E(B)

q,u ‖∞ = O(N−ε) uniformly for any non-degenerate (u, q) ∈ G (N).

Proof. Fix r � eu+q(θ−1). For ease of exposition, let

g(k) := f̂
(
k/N

)( k

eu

)Θ/2

, Ψ(x) := Ku(x)Nq((αθk/r)
Θ)g(x), Φh(x) := φ(x, r)− x(h− s),

and m(h) := min{|Φ′h(x)| : x ∈ [a, b]}. By Poisson summation∑
k≥0

Ku(k)f̂
( k
N

)
e(ks)Nq((αθk/r)

Θ)k
Θ
2 e(φ(k, r)) = euΘ/2

∑
h∈Z

∫
R

Ψ(x)e (Φh(x)) dx.

By partial integration the right hand side equals

M(r) +O(N−100 + Err(r))

where M(r) (resp. Err(r)) gathers the contribution of all h ∈ Z with m(h) = 0 (resp. of 0 < m(h) < e|u|ε).
We evaluate M(r) by Lemma 2.1 (by scaling the amplitude by a constant factor) with the specifi-

cations

ΛΦ := eu+qθ, ΩΦ = ΩΨ := eu.

Note that µ is the unique critical point of Φh. An application of Lemma 2.1 implies (note that β < 0,
thus the phase is negative)

M(r) = e(1/8)
∑
h∈Z

f̂
( µ
N

)
Nq(r, s)Ku(µ)

µΘ/2√
φµµ(µ, r)

e(c(h− s)1/θr) +O(e−u/2−3qθ/2).

To estimate Err(r), we proceed as in the proof of Lemma 4.1. First, we observe that if h is so that 0 <

m(h) < euε then the critical point µ is near one of the boundary points a, b. By possibly interchanging
their roles, we can assume µ is near a, i.e. m(a) = |Φh(a)|. Note that |Φ′h(x)| � e5uε on the interval
[a+ a1−5ε, b] and that Ψ(a+ a1−2ε)� e−2ε. Hence, by Lemma 2.2 shows

Err(r)� N−ε√
e−u+qθ

.

Thus

euΘ/2 1

N

∑
r�eu+q(θ−1)

r−
Θ+1

2 Err(r)� 1

N
eu+q(θ−1) 1√

eu+q(θ−2)

N−ε√
e−u+qθ

=
eu

N1+ε
� N−ε.

Summing M(r)c1e(−1/8)N−1r−
Θ+1

2 , over r � eu+q(θ−1) finishes the proof.

We summarise how the previous lemmas transform (4.1), for which let σi := σ(ui) := ui
|ui| and

σ := (σ1, σ2, . . . , σm). Combining (4.2) and Lemma 4.1 yields

F(N) =

∥∥∥∥ ∑
(u,q)∈G (N)

u>0

Eq,u +
∑

(u,q)∈G (N)
u>0

Eq,u
∥∥∥∥m
Lm

=

∥∥∥∥ ∑
(u,q)∈G (N)

u>0

E(B)
q,u +

∑
(u,q)∈G (N)

u>0

E(B)
q,u

∥∥∥∥m
Lm

+O(N−ε/2).
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Using Lemma 4.2 and expanding the mth-power gives

F(N) =
∑

σ1,...,σm∈{±1}

∑
(ui,qi)∈G (N)

ui>0

∫ 1

0

∏
i≤m
σi>0

E(BB)
qi,ui (s)

∏
i≤m
σi<0

E(BB)
qi,ui (s) ds+O(N−ε/2). (4.7)

To simplify this expression, for a fixed u and q, and µ = (µ1, . . . , µm) we define the function Ku(µ) :=∏
i≤m Kui(µi). The functions Nq (µ, s) and f̂(µ/N) are defined in the same fashion. Aside from the

error term, the right hand side of (4.7) splits into a sum over

Fq,u :=
cm1
Nm

∑
r∈Zm

(r1r2 · · · rm)−(Θ+1)/2
∫ 1

0

∑
h∈Zm

Ku(µ)Nq (µ, s)Ah,r(s)e
(
ϕh,r(s)

)
ds

where the phase function is given by

ϕh,r(s) := c
(
σ1(h1 − s)1/θr1 + σ2(h2 − s)1/θr2 + · · ·+ σm(hm − s)1/θrm

)
and the amplitude function is

Ah,r(s) := f̂
( µ
N

) (µ1µ2 · · ·µm)Θ/2√
|φµµ(µ1, r1)φµµ(µ2, r2) · · ·φµµ(µm, rm)|

.

Note that the argument of f̂ should be (µ1σ1, . . . , µmσm) however to simplify matters we can assume
(w.l.o.g) f is even. Now to analyse these transformed sums, we distinguish between two cases. First,
what we call the set of all (r,h) the diagonal, which is when the phase ϕh,r(s) vanishes identically. Let

A := {(r,h) ∈ N× N : ϕh,r(s) = 0, ∀s ∈ [0, 1]},

and let

η(r,h) :=

{
1 if (r,h) 6∈ A

0 if (r,h) ∈ A .

The diagonal, as we show, contributes the main term, while the off-diagonal contribution is negligible
(see the penultimate section).

5 Extracting the Diagonal

First, we establish an asymptotic for the diagonal. To ease the notation, the below sums range over
q ∈ [2Q]m, u ∈ [−U,U ], and r,h ∈ Z,

DN =
cm1
Nm

∑
q,u,r,h

(1− η(r,h))(r1r2 · · · rm)−(Θ+1)/2
∫ 1

0
Ku(µ)Nq (µ, s)Ah,r(s)e

(
ϕh,r(s)

)
ds

=
cm1
Nm

∑
q,u,r,h

(1− η(r,h))(r1r2 · · · rm)−(Θ+1)/2
∫ 1

0
Ku(µ)Nq (µ, s)Ah,r(s)ds

note that the phase function is ϕh,r uniformly 0 on the diagonal.

Lemma 5.1. We have

lim
N→∞

DN =
∑
P∈Pm

E(f |P1|) · · ·E(f |Pd|). (5.1)

where the sum is over all non-isolating partitions of [m], which we denote P = (P1, . . . , Pd).

Proof. First, we note that in DN , we have the factor∑
u∈Zm

Ku(µ)f̂
( µ
N

)

but recall that
∑

u∈Zm Ku(µ) = 1 if µi � N1+ε for i = 1, 2, . . . ,m. Thus, by the fast decay of f̂ , we
can add back in the larger µ contributions (although, note that we have extracted the |µi| < 1/2

contribution):

DN =
cm1
Nm

∑
q,r,h

1(|µi| > 0)(1− η(r,h))(r1r2 . . . rm)−(Θ+1)/2
∫ 1

0
Nq (µ, s)Ah,r(s)ds.
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Since η 6= 1, we have that (r,h) ∈ A . That is ϕr,h(s) = 0. Looking at the definition, this happens
precisely in the following situation: let P be a non-isolating partition of [m], we say a vector (r,h)

is P-adjusted if for every P ∈ P we have: hi = hj for all i, j ∈ P, and
∑
i∈P ri = 0. The diagonal is

restricted to P-adjusted vectors. Now

χP,1(r) :=

{
1 if

∑
i∈P ri = 0 for each P ∈ P

0 otherwise,
, χP,2(h) :=

{
1 if hi = hj for i, j ∈ P ∈ P
0 otherwise,

here χP,1(r)χP,2(h) encodes the condition that (r,h) is P adjusted.
Unpacking the definition of Ah,r(s) gives (note that µ = µ(s))

DN =
1

Nm

cm1
(βΘ(Θ− 1))m/2

∑
P∈Pm

∑
q,r,h

χP,1(r)χP,2(h)(r1r2 · · · rm)−1

(∫ 1

0
Nq (µ, s) f̂

( µ
N

)
µ1µ2 · · ·µmds

)
+ o(1).

First note that the constant prefactor:

c1

(βΘ(Θ− 1))1/2
=

((αθ)ΘΘ)1/2

(αΘ(θΘ−1(1− θ)Θ(Θ− 1))1/2
= 1.

Now inserting the definition of µi gives

DN =
1

Nm

∑
P∈Pm

∑
q,r,h

χP,1(r)χP,2(h)

∫ 1

0
Nq (µ, s) f̂

( µ
N

) m∏
i=1

(
c0(hi − s)1/(Θ−1)

)
ds+ o(1).

Now note that the r variable only appears in f̂ (µ/N), that is

DN =
1

Nm

∑
P∈Pm

∑
P∈P

∑
q,h

∫ 1

0
Nq,P (h) c

|P |
0 h

|P |
Θ−1

∑
r∈Z|P |
ri 6=0

χ(r)f̂

(
c0h

1
Θ−1

N
r

)
ds(1 + o(1)),

(5.2)

where χ(r) is 1 if
∑|P |
i=1 ri = 0 and where Nq,P (h) =

∏
i∈P Nqi(

∣∣∣αθc0(h− s)1/Θ−1
∣∣∣Θ). Focusing on the

sums in r1 and r2, we can apply Euler’s summation formula ([Apo76, Theorem 3.1]) to conclude that∑
r∈Z|P |
ri 6=0

χ(r)f̂

(
c0(h− s)1/(Θ−1)

N
r

)
=

∫
R|P |

χ(x)f̂

(
c0h

1/(Θ−1)

N
x

)
dx (1 + o(1)) .

Because of the condition imposed by Nq,P (h) we have h
1/θ
i � N for every i = 1, . . . , d, therefore

h
1/(Θ−1)
i � N1−θ. Changing variables x 7→ h(c

−1
Θ−1

0 N)−1x yields∫
R|P |

χ(x)f̂

(
c0h

1/(Θ−1)

N
x

)
dx =

N |P |−1

c0(hi − s)(|P |−1)/(Θ−1)

∫
R|P |

χP (x)f̂ (x) dx
(

1 +O
(
N−θ

))

here we have used that, because of χ(x), we have x|P | = −
∑|P |−1
i=1 xi and is therefore fixed. This is why

the leading factor is taken to the |P | − 1 power. Plugging this into our (5.2) gives

DN =
1

Nd

∑
P∈Pm

∑
P∈P

∑
q,h

Nq,P (h)
(
c0h

1/(Θ−1)
)∫

R|P |−1
f̂(x1, . . . , x|P |−1,−x · 1) dx(1 + o(1))

We claim that the quantity in the first line is exactly 1 + o(1).
By the Euler’s summation formula∑

q,h

(
Nq (h− s) c0(h− s)1/(Θ−1)

)
= θ

(
N(βΘ)1/θ/(αθ)Θ

(βΘ)1/(Θ−1)

)
(1 + o(1))

= Nθ

(
βΘ

(αθ)Θ

)
(1 + o(1)) = N(1 + o(1))

Thus, we arrive at

DN =
∑
P∈Pm

∑
P∈P

(∫
R|P |−1

f̂(x1, . . . , x|P |−1,−x · 1) dx

)
(1 + o(1))
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Finally consider ∫
R|P |−1

f̂(x1, . . . , x|P |−1,−x · 1) dx =

∫
R|P |−1

f̂(x1)f̂(x|P |−1)f̂(−x · 1) dx

If we focus on the integral in x1, this is simply a convolution of Fourier transforms, using that the
convolution of Fourier transforms is the Fourier transform of the same functions multiplied together
we conclude that ∫

R|P |−1
f̂(x1, . . . , x|P |−1,−x · 1) dx = E

(
f |P |

)
which leads exactly to (5.1).

6 Bounding the Off-Diagonal

It remains to bound the off-diagonal contribution, for fixed r we thus want to bound

ON :=

∫ 1

0

∑
h∈Zm

η(r,h)Ku(µ)Nq (µ, s)Ah,r(s)e
(
ϕh,r(s)

)
ds

which requires exploiting the s integral. We write the new amplitude function as

Ãh,r(s) :=
(µ1µ2 · · ·µm)Θ/2√

Φµµ(µ, r)
Ku(µ)Nq (µ, s) f̂

( µ
N

)
.

Further write

ON �
∑

h∈Zm
η(r,h)I(h, r), where I(h, r) :=

∫ 1

0
Ãh,r(s)e

(
ϕh,r(s)

)
ds.

By relabeling and redefining variables, we may write

ϕh,r(s) =
∑
`≤l

cr`(h` − s)1/θ −
∑
l<`≤L

cr`(h` − s)1/θ

where L ≤ m and h` are pairwise distinct. Now the following proposition establishes a bound for I.

Proposition 6.1. Let ϕ be as above, then

I(h, r)� Ku(µ0)Nq (µ0, s)
eu1+···+um

(r1r2 · · · rm)(1−Θ)/2
max
t≤L

e−uteθ((L−1)qt+
∑
t 6=`≤L q`)

∏
`≤L
6̀=t

|h` − ht|−1


1/L

.

(6.1)

as N →∞. Where µ0,i := ri(hi/βΘ)1/(Θ−1), that is µi with s = 0. Where the implicit constants do not
depend on in h or r provided ηr(h) 6= 0.

To prove Proposition 6.1 we aim to show that, at least one of the first j derivatives ϕ(j) is of size
N1−(j−1)θ. Then we can use van der Corput’s lemma to gain an absolute power of N . Importantly,
note that ϕ is only zero function when η(r,h) = 0.

The first L-derivatives are simultaneously small if

aj(s) := ϕ(j)(s) =
∑
`≤l

cr`

(
1/θ

j

)
(h` − s)1/θ−j −

∑
l<`≤L

cr`

(
1/θ

j

)
(h` − s)1/θ−j (6.2)

is in a small interval, say, [−Nδ, Nδ]. We will show that this cannot happen for δ > 0 sufficiently large
to achieve (6.1). To that end, recast (6.2) as the matrix-vector equation a = Mb in RL where

a` := a`(s) (` ≤ j), mj,` :=

(
1/θ

j

)
(h` − s)−j (6.3)

and

b` :=

{
cr`(h` − s)1/θ, if ` ≤ l,
−cr`(h` − s)1/θ, if l < ` ≤ L.
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The key idea is to show that the spectral norm ‖ · ‖spec of M−1, i.e. the operator norm induced by
the the Euclidean norm ‖ · ‖2, is not to large. Once this is done we can argue via

b = M−1a =⇒ ‖b‖ ≤
∥∥∥M−1

∥∥∥
spec
‖a‖2 =⇒ ‖a‖2 ≥

‖b‖
‖M−1‖spec

. (6.4)

Because the components of vector b have size

≈ max
`≤L

r`(h` − s)1/θ � max
`≤L

eθq`+u`

this will be enough to show that choosing δ ≈ 1− Lθ > 0 we cannot have a ∈ [−Nδ, Nδ]L.

Lemma 6.2. Let τ1, . . . , τL be distinct real numbers, and

V := V (τ1, . . . , τL) :=


τ1 . . . τL
...

. . .
...

τL1 . . . τLL

 .

Then V is invertible and V −1 =: (vt,T )t,T≤L satisfies

vt,T = (−1)T−1
(
τt
∏
l≤L
l6=t

(τl − τt)
)−1 ∑

`1<`2<...<`L−T≤L
`1,`2,...,`L−T 6=l

τ`1 . . . τ`L−T .

Proof. Linear Algebra. Note that V is essentially a scaled Vandermonde matrix.

With this lemma at hand, we have

Lemma 6.3. If M is given by (6.3), then

‖M−1‖spec � eθ((L−1)qt+
∑
`≤L q`)) max

` 6=t≤L

( ∏
`≤L
` 6=t

|h` − ht|−1
)
.

Proof. Let us decompose M via M = MVanMdiag where

MVan := ((h` − s)−j)j,`≤L, Mdiag := diag

((
ϑ

1

)
, . . . ,

(
ϑ

L

))

(with diag denoting a diagonal matrix). Clearly,

‖M−1‖spec � ‖M−1
Van‖spec.

Taking τ` := (h` − s)−1 < 1 in Lemma 6.2 and bounding the spectral norm by the maximum norm,

‖M−1‖spec � max
t,T≤L

(
τt
∏
`≤L
` 6=t

(τ` − τt)
)−1 ∑

`1<`2<...<`L−T≤L
`1,`2,...,`L−T 6=`

τ`1 . . . τ`L−T

� max
t≤L

(
τt
∏
`≤L
` 6=t

(τ` − τt)
)−1

.

Notice that h` � eq`θ and

|τ` − τt| =
∣∣∣∣ h` − ht
(h` − s)(ht − s)

∣∣∣∣� e−θ(q`+qt) |h` − ht| .

Consequently,

‖M−1‖spec � max
t≤L

(
eθ((L−1)qt+

∑
t 6=`≤L q`)

∏
`≤L
` 6=t

|h` − ht|−1
)

as required.

The following lemma is a direct result of van der Corput’s lemma with an amplitude function (see
for example [Hux96, Lemma 5.1.4], the details of the proof can be found in [TY20, Lemma 3.3]
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Lemma 6.4 (localized van der Corput’s lemma). Let J be a compact interval. Let ϕ : J → R be a
smooth function, let g be a real, differentiable function, and

Vanϕ,L(s) := max
i≤L
|ϕ(i)(s)|.

If ϕ(L) has at most C zero on J and λ > 0 is so that

Vanϕ,L(s) ≥ λ

holds throughout J , then ∫
J
g(s)e(ϕ(s)) ds� V (g)λ−

1
L ,

where V (g) is the total variation of g plus the value of g at either endpoint of J .

Proof of Proposition 6.1. Combining (6.4) and Lemma 6.3 yields

Vanϕ,L(s)� max
t≤L

euteθ((L−1)qt+
∑
t 6=`≤L q`)

∏
`≤L
` 6=t

|h` − ht|−1

N1+2(1−L)θ.

The derivatives of the phase function ϕ have a uniformly bounded number zeros (independent of h and
r). Thus Lemma 6.4 applies and we infer

I(h, r)� Ku(µ0)Nq (µ0, s)
eu1+···+um

(r1r2 · · · rm)(1−Θ)/2
max
t≤L

e−uteθ((L−1)qt+
∑
t 6=`≤L q`)

∏
`≤L
6̀=t

|h` − ht|−1


1/L

.

7 Proof of Lemma 3.2

As demonstrated above, by extracting the various main terms and applying the B-process we conclude
that

Km(N) =

 lim
N→∞

∑
P∈Pm

MP (N)

+O

 1

Nm

∑
h,q,r,u

η(r,h)
1

(r1r2 · · · rm)(Θ+1)/2
ON

+ o(1)

as N →∞. Inserting the bound (6.1), we deduce

Err :=
1

Nm

∑
h,q,r,u

η(r,h)
1

(r1r2 · · · rm)(Θ+1)/2
ON

� 1

Nm

∑
h,q,r,u

η(r,h)
eu1+···+um

r1r2 · · · rm
Ku(µ0)Nq (µ0, s) max

t≤m

e−uteθ((m−1)qt+
∑
t 6=`≤L q`)

∏
`≤m
` 6=t

|h` − ht|−1


1/m

.

Recall that µ0 = ri

(
hi
βΘ

)1/(Θ−1)
, thus, the condition imposed by

∑
q Nq (µ0, s) implies that hi � Nθ.

Now we can bound the sum over h by using a generalized version of Hölder’s inequality. That is we fix
exponents 1/p1 + 1/p2 · · ·+ 1/pm−1 = 1. In this case, choose pi = m for i ≤ m− 2 and pm−1 = m/2

∑
h

∏
`≤m
` 6=t

|h` − ht|−1/m �
m∑
t=1

∑
hi
i 6=t

∑
ht

∏
`≤m
6̀=t

|h` − ht|−1/m



� m
∑
hi
i>1


∑
h1

|hm−1 − h1|−1/2

2/m
m−1∏
`=2

∑
h1

|h` − h1|−1

1/m


� log(N)
m−2
m Nθ(m−1)Nθ/m � Nθ((m−1)+1/m)+ε.

Thus

Err� N
(m2+m−1)θ−1

m +ε.
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Hence, if θ < 1/(m2 + m − 1), and ε > 0 is taken small enough, then Err = o(1). From there, the
decomposition at the start of Section 4 and a standard approximation argument are enough to establish
Theorem 1.1.
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