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Abstract

Let m > 3, we prove that (an’ mod 1),>0 has Poissonian m-point correlation for all a > 0,
provided 6 < 6,,, where 6,, is an explicit bound which goes to 0 as m increases. This work builds on
the method developed in Lutsko-Sourmelidis-Technau (2021), and introduces a new combinatorial
argument for higher correlation levels, and new Fourier analytic techniques. A key point is to
introduce an ‘extra’ frequency variable to de-correlate the sequence variables and to eventually
exploit a repulsion principle for oscillatory integrals. Presently, this is the only positive result
showing that the m-point correlation is Poissonian for such sequences.

1 Introduction

In the following, let m > 2 be an integer, and let f € C2°(R™ 1) be a compactly supported function
which can be thought of as a stand-in for the characteristic function of a Cartesian products of compact
intervals in R™~!. Let || - | be the distance to the nearest integer, and [N] := {1,..., N} where N > 1
is a large parameter which is taken to oco. Given a sequence (z(n)) = (z(n))n>0 C R/Z we define its
m-point correlation, at time N, to be

RO f) = 5 S TNl = sl Nliana) = o)l o, Nlzm-1) = a(un) ), (1)

ne[l,N|m

*
where Z denotes a sum over distinct m-tuples. Thus the m-point correlation measures how correlated
points are on the scale of the average gap between neighboring points (which is N™1). We say (z(n))
has Poissonian m-point correlation if

lim R (N, f) :/ f(x)dx =: E(f) forany f € C°(R™ ). (1.2)

N—o0 Rm—1

That is, if the m-point correlation converges to the expected value if the sequence was uniformly
distributed on the unit interval. The key object in this paper are the dilated monomial sequences:

z(n) == an’ mod 1. (1.3)
The following is our main result.

Theorem 1.1. For any m > 3 the sequence (an’ mod 1),~0 has Poissonian m-point correlation for
any 0 < 0 <1/(m?+m —1), and any a > 0.

Remark. The authors and Sourmelidis [LST21] recently established that (1.3) has Poissonian 2-point
correlation for all # < 14/41 and all a > 0.

One of the reasons these sequences became popular in the 20" century is the connection to the
harmonic oscillator when 6 = 2. However, recently this interest has been extend to a general theory of
monomial sequences, see for instance a lecture of Marklof [Mar20] who presented numerical evidence
for the Poissonian local statistics of z(n) for small values of #. Our result is the first rigorous and
explicit result in this direction and lays the foundation for a theory of the statistics of slowly growing
sequences.

As m increases, the range of 0 decreases. This is to be expected since, for example, the sequence
(n'/™),>0 does not have Poissonian m-point correlations since the m™ powers accumulate at 0. The
precise range of 6 in Theorem 1.1 comes from estimates on exponential sums and oscillatory integrals.



If we could achieve square root cancellation in the sums which arise, we would be able to prove Theorem
1.1 for @ < 1/m. Theorem 1.1 is thus far from optimal. A more careful analysis using these methods
could possibly yield an improved range of 6, but not going beyond 6 < 1/m without significant new
ideas. This motivates the following conjecture:

Conjecture 1.2. For any m > 2 the sequence (an’

any 0 <0 < 1/m and any o > 0.

mod 1),~0 has Poissonian m-point correlation for

Again, we emphasize that the discrepancy between Conjecture 1.2 and Theorem 1.1 is technical in
nature and derives from suboptimal exponential sum bounds. The only real obstruction for the m-point
correlation is the sequence (n'/™ mod 1),>¢ where the m*"-powers accumulate at 0 and thus prevent
Poissonian correlations. However it should be noted that El-Baz, Marklof and Vinogradov have shown
that (y/n mod 1),~¢ does have Poissonian pair correlation, if one removes all those n which are squares.

While z, := log(n) mod 1 does not have Poissonian gap distribution, our main theorem motivates
the idea that a sequence growing faster than log(n) and slower than any power of n appears to have
Poissonian local statistics. In fact, there has been some evidence supporting the idea that the sequence
log(n)? has Poissonian gap statistics for A > 1, see [MS13], who showed that the gap distribution of
the sequence logy(n) mod 1 converges to something other than the exponential distribution. However,
if one then applies the second limit b — 1, the limiting gap distributions do converge to the exponential
distribution. Thus supporting the idea that log(n)* would have Poissonian gap distribution. We plan
to address this question in a forthcoming paper using the methods developed in the present paper.

Combinatorial Argument: One of the key steps in our proof is to complete the sums defining
the m-point correlation, that is to consider

% Y. f(Nlz(m) = a(n2), Nla(nz) —(n3)ll,. . ., Nl|z(nm—1) = z(nm)|)- (1.4)

nell,N]™

Then, in Section 3, using a combinatorial argument, we are able to show that if this sum converges to
a specified target, then the m-point correlation is indeed Poissonian. Then we show that the terms in
this target correspond exactly to certain 0 Fourier coefficients. This surprising correspondence is both
crucial in our argument, and of significant value to more general sequences as it allows one to remove
the distinctness condition in the m-point correlation function. Boca and Radziwil[BR20, p. 6] noted
the difficulty of this problem in a different setting, which they avoided by taking f supported away
from the origin. A similar, but different, combinatorial argument was previously done in [RS96] for a
different distribution. Thus Section 3 is of independent interest for more general sequences. However
the statement relies on a complex combinatorial argument, therefore we do not summarize the results
here.

1.1 History

In 1998 Rudnick and Sarnak [RS98], showed that the 2-point correlation (or pair correlation) of (1.3)
is Poissonian for any integer 6 > 2, and (Lebesgue) almost every a > 0. Two decades later [AEBM21]
and [RT21] proved the same statement for all non-integer 6 > 1, and 0 < 6 < 1 respectively. However,
excluding these metric results, very little is known about sequences on the unit interval growing with
polynomial rate.

Proving deterministic results can often be facilitated by arithmetic structure. For example, the
renormalized spacings of quadratic residues modulo ¢ have been investigated by Kurlberg and Rudnick
[KR99] who showed that the appropriate m-point correlation functions in this setting are all Poissonian
as the number of prime factors of ¢ tends to infinity. We refer to Boca and Zaharescu [BZ00] for a
theory of the pair correlation function of quadratic polynomials in finite fields. Moreover there has
been some recent work by Kurlberg and Lester on the spacing statistics of lattice points on circles,
where again, the arithmetic structure plays an important role [KL21].

When working on the unit interval, for sequences of the form z, = an’ mod 1, the only explicit
result concerning correlations is due to El-Baz, Marklof, and Vinogradov [EBMV15] who used the
dynamics of theta-sums to show that

(v/n mod 1),>1, not a square (1.5)

has Poissonian 2-point correlation. This is somewhat surprising since Elkies and McMullen [EM04] had
established, via quantitative non-divergence in the space of lattices, that the gap distribution of (1.5)
is mot Poissonian.



For m > 3 there are hardly any results on the probabilistic theory for m-point correlation functions
and even fewer deterministic results. An exception is the work of Yesha and the second named author
[TY20], who showed that (n® mod 1), has Poissonian m-point correlation, for almost all o > 4m? —
4m—1. Moreover, for lacunary sequences we refer to Rudnick and Zaharescu [RZ99, RZ02], for dilations
of lacunary integer sequences; and Chaubey and Yesha [CY21] where this is extended to dilations of
real-valued sequences.

Similarly, Rudnick, Sarnak, and Zaharescu [RSZ01], and Fassina, Kim, and Zaharescu [FKZ21] also
studied the the m-point correlation functions along lacunary sub-sequences of N.

1.2 Plan of Paper

The proof of Theorem 1.1 is roughly the same for all values of m. First, this will be an inductive ar-
gument: assume the sequence has k-point correlations for all k < m (note that the range of  decreases
as m increases). Then we argue in roughly three steps.

Step 1: First we relate the problem to the m!"-moment of a random variable. This will effectively
decorrelate the sequence elements, at the cost of introducing a new frequency variable. Then, following
the example of [RS96] we complete the sums to aid the analysis. As a result, we need to do some
combinatorial book-keeping of adding and subtracting terms to isolate a ’target’ main term. This
combinatorial argument, which allows us to complete the sum, is of interest for any sequence. As such
Section 3 is written for a general sequence.

Step 2: Using various smooth partitions of unity and approximations to indicator functions, we Fourier
expand the counting problem. This reduces the problem to an asymptotic evaluation of the L™ ([0, 1])
-norm of a two dimensional exponential sum. We use a variant of van der Corput’s B-process (Poisson
summation plus a stationary phase expansion) to shorten the ranges of the exponential sums in the
mt"-power. Then we apply the B-process a second time in a different variable to maximize the saving.
When running the B-process some care is needed since we need rather good error terms — somewhat
better than one finds in the classical literature. This forces us to do the B-process by hand, and to use
a second order, rather than a first order, expansion of the arising oscillatory integrals. If we stop here,
then our bound on the error term is of size O(N™?).

Step 3: Next we expand the L™([0, 1])-norm, and estimate oscillatory integrals of the shape

1
/0 e(e Z +ri(hy — s)l/o)ds,

I<L

where ¢ € C is a constant only depending on «, and 6, and r;, h; ~ N? for | < L < m. The arising main
term comes from the regime where the phase function

Z :tTl(hl — 8)1/0

I<L

vanishes identically. The remaining terms, due to the polynomial nature of the phase function, admit
a non-trivial bound. We show that such a phase function has the property that, at any given point
s € [0,1], at least one of the first m-derivatives is large and thus we conclude by applying a localised
version of van der Corput’s lemma, which allows us to bound the error term by o(1) provided 6 is in
the given range.

Notation: Throughout, we use the usual Bachmann-Landau notation: for functions f,g: X — R,
defined on some set X, we write f < g (or f = O(g)) to denote that there exists a constant C > 0 such
that |f(z)] < Clg(z)| for all x € X. Moreover let f < g denote f < g and g < f, and let f = o(g) denote
that L2 — 0.

g(z) ~
Given a Schwartz function f: R™ — R let f denote the m-dimensional Fourier transform:

flk) = /Rm fx)e(—x - k)dx.

Here, and throughout we let e(z) := €272,

All of the sums which appear range over integers, in the indicated interval. We will frequently be



taking sums over multiple variables, thus if u is an m-dimensional vector, for brevity, we write

> Fk)= > > F(K).

ke[f(u),g(u)) k1€[f(u1),g(u1))  km€[f(um),g(tum))
Moreover, all L? norms are taken on [0, 1] with respect to Lebesgue measure. Let

7* =7\ {0}.

As o, 0, and f are considered fixed, we suppress any dependence in the implied constants. Moreover,
for ease of notation, € > 0 may vary from line to line by a bounded constant. Further, we will frequently
encounter the exponent

2 Preliminaries

The following stationary phase principle is derived from the work of Blomer, Khan and Young [BKY13,
Proposition 8.2], is a key technical device for us.

Lemma 2.1 (Stationary Phase Lemma). Let ® and ¥ be smooth, real valued functions defined on a
compact interval [a,b]. Let U(a) = ¥(b) = 0. Suppose there exists constants Ag, Ly, Qe > 3 so that

<I>(j)(x) < Ai;?y \I/(j)(x) < ij and (1)(2)(33) > A% (2.1)
Q% Qg 0

for all j=0,...,4 and all x € [a,b]. If ®'(x0) =0 for a unique xq € [a,b], and if 3 (z) > 0, then

’ _e(®(z0) +1/8) _ Qe
| et ua) ar - e 00| e )

provided Qg /Qy < logQe. If instead ®2)(z) < 0 on [a,b] then the same equation holds with e(1/8)
replaced by e(—1/8).

Moreover, we also need the following version of van der Corput’s lemma ([Ste93, Ch. VIII, Prop. 2]).

Lemma 2.2 (van der Corput’s lemma). Let [c,d] be a compact interval. Let ®,¥ : [c,d] — R be smooth
functions. Assume ®" does not change sign on [c,d] and that for some i >1 and A > 0 the bound

29 ()| > A
holds for all x € [c,d]. Then
d d / —1/i
/ (@)W () do < (|0(d)| +/ W ()] dar) A

where the implied constant depends only on i.

3 Combinatorial Completion

To begin with, we setup the problem for the triple correlations, as the general setup is rather more
complicated. The key insight in both cases is the following: using a well-known trick (see, for example,
[Mar07] for the pair correlation) one can express the completed m-point correlation as the m" moment
of a particular random variable. In so doing, we effectively de-correlate the sequence elements, at
the cost of introducing a new variable, and the benefit of introducing an oscillatory integral. This de-
correlation will prove crucial, as it allows us to apply one-dimensional techniques without accumulating
error terms. Since this process has applications to more general sequences, in the current section, let
(y(n))n>0 be a sequence on R+ and let z(n) := y(n) mod 1.

Without using this trick, one could hope to apply multi-dimensional stationary phase arguments in
the same way. However, the size of the determinant of the Hessian is difficult to understand and one
needs to contend with the accumulation of error terms.



3.1 Setup of the Problem: Triple Correlation

Assume the sequence (z(n)) has Poissonian pair correlations. To access the triple correlation, it is more
convenient to work with the following random variable. Let f be a CZ°(R) function, and define

Sn(s = > > F(N(yn) +k+s)).

ne[N] keZ

Note that if f was the indicator function of an interval I, then Sy would count the number of points
in (zn)n<ny which land in the shifted interval I/N +s. Now consider the third moment of Sy. That is
(assuming for simplicity f > 0)

MO(N / S3:(s

/ Z S F(N(y(n) + k1 + 9)) F(N (y(n2) + k2 + ) F(N(y(ng) + ks + ))ds.

3 kez3

Moving the n, k1, ko sum outside of the integral and changing variables s — (N ~!s — y(n3)) yields (for
N large enough)

MB (N / Z > F(N(y(n1) — y(na) + k1 + 5)) f(N(y(n2) — y(n3) + ko + ) f (Nk3 + s)ds
N3 kez3
DYDY / F(N(y(n) — y(n3) + k1) + ) f(N (y(nz) — y(n) + k) + 5) f(s)ds
nE[N3k€Z2
Z > F(N(y(m) = y(n3) + k1), N(y(n2) — y(n3) + k2)) , (3.1)
ne[N3k€Z2

where F(xz,y) := [ f(x +5)f(y+s)f(s)ds. That is, by considering the third moment of Sy, we recover
the (completed) triple correlation of F.
If the sequence z(n) had Poissonian triple correlations then:

LS S RN () - )+ k), Nanz) — ylns) + k) - [, Flemdsdy = B(1)".

ne [N]3 keZ?

Now, if n; = n3 # na, then by inspection of (3.1), and the compactness of f, we recover the pair
correlation of F(0,z), which, by the assumption that (z(n)) has Poissonian pair correlations, converges
to E (F(0,z)) = E (f) E(f?). Moreover if ny = ny = n3, we have the trivial sum F(0,0) = E(f3). From
here, we conclude that, (z(n)) has Poissonian triple correlations if and only if

ME(N) = E(f)° + 3E () E(f)) + B(*), (3.2)
as N — oo.
With that target in mind, first we apply Poisson summation to the sums over n;, to see that
k k
M) = 1 / 6%3 EZ:S T F2) P58 ) elhrytnn) + hayna) + ksy(ns) + (s + ko + ks)s) ds

Now suppose ks = 0, then we obtain

N2/ > > f( ) ( )(k1y(n1)+k2y(n2) (k1 + k2)s) ds,

ne[N]2 kez?

which is exactly E (f) times the second moment of Sy. Therefore, this converges to E (f) E(f?)+E (f)>.
Thus, by symmetry

MO (N) = E(N) + P(N) + o(1)

where P(N) — 3E (f)E(f%) + E(f)® as N — oo (the term E (f)* comes from ki = ky = k3 = 0, and is
thus only counted once), and where

N3/ YIS f(%) -y(n) + k- 1s) ds,

ne[N]3 ke(Z*)3

~

here for the sake of notation, we write f(k) := f(k1)f(k2)f(ks) and let y(n) = (y(n1),y(n2),y(n3)). The
remaining goal (for the triple correlation) is to show £(N) converges to E (f3) as N — oo.



3.2 Combinatorial Preparations

This process of completing the m-point correlation and then extracting terms to isolate a target is more
complicated when m > 3, and involves a complicated combinatorial argument. To ease the argument
we first fix some notation.

Given the set [m], let P be a partition of {1,...,m}. Let n € Z™, then we say n is P-distinct, if
n; = n; whenever ¢ and j belong to the same partition element, and otherwise, n; # n;. For example if
m =6 and P = {{1,3}, {4}, {2,5,6}}, then n is P-distinct if and only if it is of the form n = (a, b, a, c, b, b)
for some distinct integers a # b # c. Given a partition P of {1,...,m}, and a vector n € Z™, let

{1 if n is P-distinct

. (3.3)
0 otherwise.

xp(n) =

Moreover, given a partition P of [m], we say that j € [m] is isolated if j belongs to a partition element of
size 1. A partition is called non-isolating if no element is isolated (and otherwise we say it is isolating).
For our example P = {{1, 3}, {4}, {2,5,6}} we have that 4 is isolated, and thus P is isolating.

3.3 Setup of the Problem: m-point Correlation

For the m-point correlation, we proceed in the same way as we did for the triple correlation. First,
assume that for k < m — 1 the k-point correlation is Poissonian. Now consider the m‘" moment of Sy

) :/1 Sn(s)"ds

/ S (PN + k1 +9) - F(N (ynm) + ko + 5))) ds
ne[N]|™ kezZ™
[ X W)+ ka9 FN o) + s + ) AN () + 5) | d.
R\ ne[N]™ kezm—1
Next, we move the n, ki,...,ky,—1 summation outside of the integral and thereafter change variables

via s = N~ (s = (km + y(nm))). As a result, we see that M™(N) equals
v 3 ([« /R (0(02) = 0m) 4 12) )+ FV(p0m1) = (o) + 1) + )1 (5) 5

m kezZm—1t

Z > F(N —y(n2) + k1), N(y(n2) — y(n3) + k2), ... N(y(nm—1) — y(nm) + km-1)) ,
ne[N mkezm-1

where

F(z1,22,...,2m—1) /f fz1+ 22+ +zmo1+8)fza+ -+ 2zmo1+5)... f(zm=—1+s) ds.

Note that if f € CS°(R™) then F € CZ°(R™1). The last line is simply the completed m-point correlation
of F. Hence our goal is to show that, if we replace the sum over n by the sum over n with distinct
entries, then this converges to E (F) = E (f)™.

First, let us understand what we have added back in by completing the sum over n, this will then
allow us to write down a ’target’ which will provide the desired convergence (for the triple correlation
this target was E(fs)) Consider

/ S Y W) + k1 + ) F(N (ynm) + km + ) ds (3.4)

ne[N]|™ kezZ™

and apply Poisson summation to each of the sums in k;, giving

M) Nm/ S F(E el ym) + k- 15)ds, (3.5)

ne[N]™ kezm

where y(n) := (y(n1),...,y(nm). The key insight which motivates the proceeding argument is that if in
(3.4) we have that n; is distinct from all other n;, then the term corresponding to this case in (3.5)
will come from k; = 0.



To access this correspondence, in (3.4), let us further decompose the sum over n (recall the definition
of xp (3.3))

M™IN Z/ Z xp(m) > (FIN(y(n1) + k1 +5)) -+ fF(N(y(nm) + km + 5))) ds

N]m kezm

where, the sum over P is over distinct partitions of {1,...,m}. Clearly, the m-point correlation corre-
sponds to the trivial partition Py := {{1},{2},...,{m}}. All of the other terms come from completing
the sum. Given a partition P, let

/ Yo xpm) Y (f(N(y(n1) + ki +9) - f(N(y(nm) + km + 5))) ds.

ne[N]™ kezm

Now consider the sum (3.5), and perform a decomposition on the k variable:
M () +Z( ) ’”JNJ/ Z 3 f( Je(y(m) -k + k- 1s)ds,

NI ke(z*)

that is, we fix a j and choose m — j of the k; components to be equal to 0. Note that j cannot be equal
to 1 since the integral in s forces ki + - -+ + km, = 0, therefore we cannot have only one k; # 0. Let

K;(N) = <m7fj> mJN]/ Z 3 f( ) ~y(n) + k- 1s)ds

NI ke(z*)?

Note that Ko(N) := f(0)™ = E(f)™.
The following proposition is enough to prove Theorem 1.1
Proposition 3.1. Fiz j € {0,2,3,...,m} we have that
i K = Jim S Mp(N), (3.6)
m—j 1S0.

where the sum ranges over the partitions P with m — j many isolated points.

This is enough to prove Theorem 1.1 since we have that the m-point correlation is given by

M’Po( ) M(m) Z M'p
P#Po
m
= SOk =>0 > Mp(N)
j€{0,2,3,...,m} = P

m—j 180.
=Ko(N) =E (/)™

(note that it is impossible to have all but 1 coordinate be isolated, since a non-isolated coordinate must
be in a partition element with another non-isolated coordinate).
In fact, it is enough to restrict to non-isolating partitions. Let 22, denote the set of non-isolating
partitions of [m].
Lemma 3.2. We have that
N KmN) = Jim > Mp(N 3.7
PEPm

The proof of Lemma 3.2 is the content of Section 4. Let us assume it is true for the time being,
and show that Proposition 3.1 follows.

Proof that Lemma 3.2 implies Proposition 3.1. The proof for m = 3 is clear from Subsection 3.1. Take
m > 3 and assume Lemma 3.2 holds for all values of the correlation level less than, or equal to m.
Assume j < m and consider

/cj(zv)=<mm ) "”NJ/ >y f( ) ~y(n) + k- 1s)ds,

-/ €[N ke(z*)?



we can use Lemma 3.1 for m = j to deduce that

Jim K5V = (m”i j>E<f>'” %% Jim_ Mp(N). (3.8)
O

It remains to prove (3.7), or equivalently
Jim (V)= Y E(f‘Pl‘)..-E(flpd‘). (3.9)

PEPm

where we have labeled the partition P = (P1, Pa, ..., Py), and |P;| is the size of P;, and where

Nm/ >y f( ) (ak-n + k- 1s)ds.

ne[N|™ ke(Z*)

The remainder of the paper is devoted to proving (3.9).

3.4 Dyadic Decomposition

It is convenient to decompose the sums over n and k into dyadic ranges in a smooth manner. Given
N, we let Q > 1 be the unique integer with ¢? < N < ¢?*!. Now, we describe a smooth partition of
unity which approximated the indicator function of [1, N]. Strictly speaking, these partitions depend
on @, however we suppress it from the notation. Furthermore, since we want asymptotics of M) (N),
we need to take a bit of care at the right end point of [1, N], a tighter than dyadic decomposition is
needed. Let us make this precise. For 0 < ¢ < @ we let 91; denote a smooth function for which

supp(Mq) C [e/2,2e7)

and such that 9g(z) + Ngt1(x) = 1 for = between 2e4~! and ¢972/2. Now for ¢ > Q we let 9, form a

smooth partition of unity for which
2071 1 ifl<z<e?
Z Ng(z) = , and
=0 0 ifx<1/2 0rm>N—|—log(N)

eQ eQ eQ eQ
2+(QQ)2Q’Q+(3+QQ)2Q>-

Let || - |oo denote the maximum norm on R. We impose the following condition on the derivatives:

supp(My) C

() e for g < Q
Ng oo 3.10
9t < {(6Q/Q)‘t for @ <, (310)
for t < 4. Thus
2Q—-1 m
E(N / ( 3D My(n Zf( ) (kan® +ks)> ds. (3.11)
q=0 neZ k#0

A similar lower bound can also be achieved by omitting some terms from the partition.
We similarly decompose the k sums, although thanks to the decay of Fourier transforms, we do not
need to worry about the large k values. Let £, be a smooth function such that

v 1 if k| e [1, N1TE)
Z Ru(k) = . 142
w—uv 0 if|k|<1/20r N ,

and the symmetry &_, (k) = fu.(—k) holds true for all u,k > 0. Additionally, we require
supp(fu) = [e"/2,2e") ifu>0, and
18D oo < e 1M, forall 1 <t < 4.

Therefore a central role is played by the smoothed exponential sums

Equl(s) == NZRU ( ) (ks) Z‘)’Iq kom ). (3.12)

neZ



Notice that (3.11) and the rapid decay of f imply
U 2Q-1

ENY<|| D > Equl|  +o(1).
u=—U ¢q=0 Lm
Now write
1 2Q0—-1 U 1 Kk P
FIN) =5 2 3 ﬁu(k)‘ﬁq(n)/o f(ﬁ)e(ak~n +k-1s)ds,

q=0 u=-U k,nezm™

where 9M(n) := M(n1)N(n2) - - - N(nm). Our goal will be to establish that F(N) = E(f™) + o(1). Then,
since we can establish the same asymptotic for the lower bound, we may conclude the asymptotic for
E(N). Since the details are identical, we will only focus on F(N).

Fixing, q, and u, we let

1 o~
Fqu(N) = ﬁ/o . 1§zm mq(n)ﬁu(k)f(%)e(ak -’ + k- 1s)ds.

Remark. In the proceeding sections, we will fix q and u. Because of the way we have defined 91,4, this
implies two cases: ¢ < @ and Q < q. The only real difference in these two cases are the bounds in
(3.10), which differ by a factor of Q@ = log(N). To keep the notation simple, we will assume we have
q < Q and work with the first bound. In practice the logarithmic correction does not affect any of the
results or proofs

4 Applying the B-process

Fix a small § > 0. We say (u,q) € [N'T¢] x [2Q] is degenerate if either one of the following holds
afelvlT(0=1a 1/10, or ¢ < 4Q.

Otherwise (u, q) is called non-degenerate. Let 4(N) denote the set of all non-degenerate pairs (u,q). In
this section it is enough to suppose that u > 0 (and therefore k > 0). Next, we show that degenerate
(u,q) are negligible. If afett-ha o 1/10, then the Kusmin—-Landau estimate (see [IK04, Corollary
8.11]) implies

0 1
gz‘ﬁq(n)e(kan ) < W’

and hence
1 e(1=0a  (1-0)q _
1€q,ulloc < N Z A < NU < N

k=xev

O0+e

Now suppose ¢ < 6Q. Expanding the m'*-power, evaluating the s-integral and trivial estimation yield

1 _
I€q,ullFm < S #elha o hom < e s ke ko = 0IN™ « NTOT1HE

The upshot is that there exists a constant p = p(6) > 0 so that

m
&17“ < N_pv
(u.0) €[N+ [2QN\F (N) L
and the triangle inequality implies
m
F(N) = ‘ > &g +O(N™?). (4.1)
LTTL

(u,9)€9(N)

4.1 First application of the B-Process

Now we are ready to apply the B-process to shorten the n-summation in &4, (s). To that end, assume
k>0 and let

d(k,r) = prOrt ™,

where
8= a®(9@_1 B 9@))7



note that 8 < 0, and thus we will flip the sign of the phase function by applying the B-process.
To simplify the analysis of signs in the two different cases v > 0 and v < 0, we make the following
observation. We can suppose that f is an even function; thus f is even and real-valued. Hence,

5q7—u(5) = 5q7u(5) (4-2)

holds for all s € R which reduces the discussion of the case u < 0 to the case u > 0. The next lemma
states that &4, is approximated suitably well by

42 (s) = AU S a0 (5 )elhs) 3o Nal(@dh/r)®) s ok,

k>0 r>0 r

where
c1 :=1/O(ah)®.

Lemma 4.1. If u >0, then ||Equ — agf?)uoo = O(N %) uniformly for all non-degenerate (u,q) € ¢(N).
Proof. Fix k = e*. Let [a,b] := supp(Ng), () := kaz’ — rz, and m(r) := min{|®)(z)| : = € [a,b]}. By
Poisson summation and partial integration,

> Ny(n)e(kan®) = /oo Ny (z)e(®r(z)) dz = M (k) + O(N ' 4 Err(k)),
nez rez” —>®

where M (k) (resp. Err(k)) gathers the contribution of all r € Z with m(r) =0 (resp. of 0 < m(r) < N°¢).
Next, we evaluate M(k). Taking ¥(z) := Ng(z),Ap, = e*T% and Qp, = Qp := ¢, Lemma 2.1
applies. The unique critical point @, of ®, is given by z, := (afk/r)®. Using 1 + 60 = © shows that
@ (zr) = ¢(k,r) and

O+1

abk\ (0=2)° _orT
To ease notation, ®(z) := & (). Since (u,q) is non-degenerate, Ag/Qqp = e+~ > 1/(10a6). Thus

M(k) = cre(~1/8) 3 9y (k, 1) e(d(k, 7)) + O(Ag/*TOE)), (4.3)
reZ

To bound Err(k), notice m(r) = min(|®/.(a)|, |®,(b)|). Hence there are O(N¢) many r with 0 < m(r) < N°®.
By swapping a and b, if needed, we have m(r) = |®,(a)| > ||afa’ 'k||. Lemma 2.2 (for i = 1,2) yields

0 1 1
v >, d : 7 , th
[ weetonte as i (5. o). thus
e . 1 1
Err(k) < N min (Haﬁa‘g*”ﬂ“, \/m)

Next we observe that whenever w,Q > 0 satisfy 0 < 10w < Q < 1/10, then

Z min (L l) < ue®
llwkl|” ©2 '

k=ev
uta(9-2) .. . .
Here, we take w := afa’ ! and Q:=¢ = Combining the previous two bounds implies
Z Err(k) = O(N'71%), provided u < (1 — 10¢)log N. (4.4)

kxev
On the other hand, suppose u > (1 — 10¢) log N. The mean value theorem gives us the lower bound
@' (a+at 707105 _ o' (a) > ka 1116 > N*¢. Thus, by monotonicity, ®'(z) > N* for = € [a+a'~0+15 p).

Due to (3.10), we infer W(a 4 o' ~0+16%) « ¢=9(0=162)  Hence
a+a179+165

/Oo U(z)e(®r(z)) do < / U(z)e(®r(z)) do+ N3

— 00 a

_ 1 1
N2 ( mi 1).
< (mm<\|a0a9*1kn’ eu+q<6f2>) " )
Arguing as before, we conclude

Z Err(k) = O(N'™), provided (1 — 10¢)log N < u < log N. (4.5)

kxev

The proof is completed by summing (4.3), (4.4), and (4.5) against N ™', (k) f(k/N)e(ks) for k >0. O

10



4.2 Second Application of the B-Process

Next we apply the B-process to shorten k-summation within &gi). To this end, define (for u > 0)
0/2

g(BB — Cl m r, h) ,Lti h— 1/9T
;ﬂ;]f( ) Ry (r, ) R (1) —clelh = )")
where
- — 1/(6-1),0
Bup(p,r) = Wﬂh, T)‘h:u’ Ng(h,s) := Ng((abco(h — s) )©), o)
p = p(h,r,s) = cor(h — 5)/ (971

and where the two constants c,cg, depend only on «, and 6 but do not play a role in what follows.
Then we have the following lemma

Lemma 4.2. Ifu > 0, then ||Sq(ELB) —Sq(i)ﬂoo = O(N~%) uniformly for any non-degenerate (u,q) € 4(N).

Proof. Fix r = *t9(0=1) For ease of exposition, let

ANCYE
o) =T (5) W(x) = 8u@) Mg ((00k/1)°)ax), (@) = 0(x.1) — a(h ).
and m(h) := min{|®},(z)| : = € [a,b]}. By Poisson summation

3 Rulk ( ) (ks)Mq((abk /1)) T e(d(k, 1)) = “©/> Z/ ) da.

k>0 heZ

By partial integration the right hand side equals
M(r) + O(N 10 4 Err(r))

where M(r) (resp. Err(r)) gathers the contribution of all h € Z with m(h) = 0 (resp. of 0 < m(h) < el“l).
We evaluate M (r) by Lemma 2.1 (by scaling the amplitude by a constant factor) with the specifi-
cations

Ag := ew—qe7 Qp = Qg :=e".

Note that p is the unique critical point of ®;,. An application of Lemma 2.1 implies (note that 8 <0,
thus the phase is negative)
0/2

e(1/8) 2 Ng(r, s)Ru 'uiech—sl/er Oe_“/2_3q9/2.
/’%f(N) ol 8)Rulp) —meselelh = 5)"/r) + O )

To estimate Err(r), we proceed as in the proof of Lemma 4.1. First, we observe that if & is so that 0 <
m(h) < e“® then the critical point u is near one of the boundary points a,b. By possibly interchanging
their roles, we can assume g is near a, i.e. m(a) = |®,(a)|. Note that |®} (z)| > €5“¢ on the interval
[a +a*~%%,b] and that ¥(a + a'~%¥) « e~ 2¢. Hence, by Lemma 2.2 shows

N—E
EI‘I‘(T) < \/ﬁ
Thus
u®/2i i utq(6—1) 1 NT° _ et —&
Ty E(H) () < e Ty e~ N <N
Summing M (r)cie(—1/8)N =12 over r = ¢“*9(=1) finishes the proof. O
We summarise how the previous lemmas transform (4.1), for which let o; = o(u;) = |Z’}‘ and
o = (01,02,...,0m). Combining (4.2) and Lemma 4.1 yields
F(N) = Z Equ + Z Eq,u
(u,q)€F(N) (u,9)€¥(N) L
u>0 u>0
- qm
= > &R X &R o,
(u,q)€F(N) (u,9)€¥(N) L
u>0 u>0

11



Using Lemma 4.2 and expanding the m!"-power gives

Fn= 3 / T €52 s) T B2 (s) ds + o(v—=/2). (4.7)
T1yenny om€{E1} (u4, ql)eg i<m i<m
;>0 ;<0

To simplify this expression, for a fixed u and q, and p = (u1, ..., um) we define the function Ku(p) :=
[Ti<m fu;i(pi). The functions Ng (k,s) and f(u/N) are defined in the same fashion. Aside from the
error term, the right hand side of (4.7) splits into a sum over

(rirg )~ (OFH/2 Z Ru ()N (1, 8) A r(s)e (Pne(s)) ds
I‘GZ"" O heZm

cf’

Fqu = Nm

where the phase function is given by
Yh,r(s) :=c (01 (h1 — 8)1/07”1 + o2(hg — 8)1/97"2 +- -+ om(hm— s)l/erm)

and the amplitude function is

A r ::A ﬁ (,U/I/L[Qlum !
hur(s) f( ) V1bpn (1, m1) bup (2, 72) - - G (pim, rm )|

)@/2

Note that the argument of f should be (101, - .-, tmom) however to simplify matters we can assume
(w.l.o.g) f is even. Now to analyse these transformed sums, we distinguish between two cases. First,
what we call the set of all (r,h) the diagonal, which is when the phase ¢ (s) vanishes identically. Let

o = {(r,h) e NxN:pp,(s) =0,Vs € [0,1]},

and let

_Jr if(r,h) g
e ) = {0 if (r,h) € .

The diagonal, as we show, contributes the main term, while the off-diagonal contribution is negligible
(see the penultimate section).

5 Extracting the Diagonal

First, we establish an asymptotic for the diagonal. To ease the notation, the below sums range over
q€2Q™, ue[-U,U], and r,h € Z,

m 1
Dy = g 2 (L= aeb)ura )~ O [0 (1) Ans()e (onr(s)) ds
q,u,r,h
m 1
— 3 W) r) O [ R ()9g (1 5) A ()
q,u,r,h 0

note that the phase function is ¢p, » uniformly 0 on the diagonal.

Lemma 5.1. We have

li = [Puly ... |Paly _

Jim Dy =3 E(F7) - E(F) (5.1)
PEPm

where the sum is over all non-isolating partitions of [m], which we denote P = (Pi,..., Py).

Proof. First, we note that in Dy, we have the factor

Z ﬁu(#)f(%)

uczm

but recall that 3 c/m Ru(p) = 1 if p; < N'Fe for i = 1,2,...,m. Thus, by the fast decay of f, we
can add back in the larger p contributions (although, note that we have extracted the |u;| < 1/2
contribution):

1
N 2 Llil > 0)(1 = (e, ) (rira..rm) =D/ / Mg (12, 5) An v (s)ds.
q,r,h 0

12



Since 1 # 1, we have that (r,h) € /. That is ¢, h(s) = 0. Looking at the definition, this happens
precisely in the following situation: let P be a non-isolating partition of [m], we say a vector (r,h)
is P-adjusted if for every P € P we have: h; = h; for all i,j € P, and },.pr; = 0. The diagonal is
restricted to P-adjusted vectors. Now
{1 if ¥ ;cpri =0 for each PP {1 if hy=hjfori,jePeP
xp,1(r) = xp,2(h) =

)

0 otherwise, 0 otherwise,

here xp 1(r)xp,2(h) encodes the condition that (r,h) is P adjusted.
Unpacking the definition of A, ,(s) gives (note that p = p(s))
-1

1 i
,DN:7+ xp,1(r)xp2(h)(rira - rm)
N (G617 25 2, "

1 -~
< 0 mq (“78)‘70(%) MlﬂQMmdS) +O(1)

First note that the constant prefactor:
¢ ((a6)®©)'/2

(B6(6 - 1)12 (PO 1(1-0ee 1)z -

Now inserting the definition of u; gives

Dy=m S 3 xpalxpalb /‘ﬁq ws) T () TT (coths =)/ © ) ds + o(1).

PeEZ,, q,r,h i=1

Now note that the r variable only appears in f (u/N), that is

Pv=gr 3 XY [ mep w5 ()f(coh“ )ds<1+o<1>>, (5.2)

PEP,, PEP q,h rezlPl
7’7;750

2
where x(r) is 1 if Z‘lpll r; = 0 and where Mg p(h) = [[;cp Nqg; (|bco(h — 3)1/971‘ ). Focusing on the
sums in r; and re, we can apply Euler’s summation formula ([Apo76, Theorem 3.1]) to conclude that

~[ c (h—s)l/(gfl) _ ~( coh/®=1)
> x(f <0Nr _/me x(x)f OTX dx (1+ o(1)).

rez!fl
r;7#0

Because of the condition imposed by ‘ﬁqp(h) We have h;/e < N for every i = 1,...,d, therefore
R/ (©=1)
i

< N'79 Changing variables x — h(cg = N)"x yields
{ cohM/(©-D - NIPI-1 ~ »
/le X(X)f< NoX)dx= co(hy — $)IPTD/®T) Jop xp () (x) dx (1 +0 (N ))

here we have used that, because of x(x), we have z|p| = — Zy:)lfl x; and is therefore fixed. This is why
the leading factor is taken to the |P| — 1 power. Plugging this into our (5.2) gives

Dy = Nd D D> Marh (Cohl/(@*”)/w‘flf(wl,.--,w\p|71,7x~1) dx(1+ o(1))

PeP,, PEP q,h

We claim that the quantity in the first line is exactly 1+ o(1).
By the Euler’s summation formula

1/9 /(00)©
Zh (‘J”tq (h —s)co(h — 5)1/(9_1)> =0 (N((ég))1/(é(—10)) > (14 o(1))
a,

— NO ((fe?@) (14 0(1)) = N(1 4+ 0(1))

Thus, we arrive at

PeEPm PEP

13



Finally consider

/};PPI f(xly C TPl X 1) dx = / f(xl)A(x|P|fl)f(7X’ 1) dx

RIPI-1

If we focus on the integral in z1, this is simply a convolution of Fourier transforms, using that the
convolution of Fourier transforms is the Fourier transform of the same functions multiplied together
we conclude that

/R\PH f@r.. zpp g, —x-1) dx = E (f‘P|)

which leads exactly to (5.1).

O
6 Bounding the Off-Diagonal
It remains to bound the off-diagonal contribution, for fixed r we thus want to bound
1
Opn = > n(r,h)Ru ()N (1, 5) Ap r(s)e (on,e(s)) ds
O hezm

which requires exploiting the s integral. We write the new amplitude function as

T (a2 - - )/ L

Apr(s) = e Ru()Nq (1, 8) [ (7 ) -

V Qpuu(p,r) (N>
Further write
1 ~
On K Z n(r,h)I(h,r), where I(h,r):= / Ap r(s)e (pnr(s)) ds.
hezm 0

By relabeling and redefining variables, we may write

onr(s) = crglhe— )" = > crg(hy —5)'°

<1 1<¢<L
where L < m and h, are pairwise distinct. Now the following proposition establishes a bound for I.
Proposition 6.1. Let ¢ be as above, then
1/L
I(h,r) < fu(po)Nq (Ko ) i max | e f (LDt zcr a0) H lhg — he| ™!
s 0/ \Ho> (7"17”2"'7'171)(17@)/2 t<L I
£t
(6.1)

as N — co. Where po; := ri(hi/ﬁe))l/(@*l), that is p; with s = 0. Where the implicit constants do not
depend on in h or r provided ne(h) # 0.

To prove Proposition 6.1 we aim to show that, at least one of the first j derivatives /) is of size
N1=0G=1¢  Then we can use van der Corput’s lemma to gain an absolute power of N. Importantly,
note that ¢ is only zero function when 7(r,h) = 0.

The first L-derivatives are simultaneously small if

a;(s) = c,p(j)(s) = Zcm (1§0) (he — s)l/e_j — Z cry <1§9> (hy — s)l/e_j (6.2)

<l I<t<L

is in a small interval, say, [-N°, N°]. We will show that this cannot happen for § > 0 sufficiently large
to achieve (6.1). To that end, recast (6.2) as the matrix-vector equation a = Mb in R” where

ap:=ay(s) (£ <), mj g = <1§0> (he —s)™7 (6.3)

and
by cre(hy — 8)1/9, ife<l,
¢ —CT@(hg—S)l/e, ifl<l<L.
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The key idea is to show that the spectral norm || - [|spec of M1, i.e. the operator norm induced by

the the Euclidean norm || - ||2, is not to large. Once this is done we can argue via
_ _ b
b=t bl < |1 jall, = fal, > AP (6.4)
spec [M~lspec
Because the components of vector b have size
~ maxry(hy — 3)1/9 = max e?9e e
(<L (<L
this will be enough to show that choosing 6 ~ 1 — L6 > 0 we cannot have a € [-N°, N°]F.
Lemma 6.2. Let 71,..., 7 be distinct real numbers, and
T ... TL
V :V(Tl7 aTL) =
Lok
Then V is invertible and V1 =: (ve,7)e, 7<1 Satisfies
-1
v = (—1)7171 (’Tt H (m — Tt)) Z Toy - Tlp _p-
I<L U1 <tla<..<lp_7<L
it 01,00, by _p L
Proof. Linear Algebra. Note that V is essentially a scaled Vandermonde matrix. O

With this lemma at hand, we have
Lemma 6.3. If M is given by (6.3), then
-1 O((L—1)qe+32 ) -1
[M™ |lspec < € QT2 9 E;ntaSXL (K];E |he — he >

=

Proof. Let us decompose M via M = My, Mgiag Where

i . ) s
Myan == ((he —5)™7) o<, Mgiag = diag ((1) ey (L))

(with diag denoting a diagonal matrix). Clearly,
-1 -1
[M ™ [lspec < [|Myap llspec-

Taking 74 := (hy — s)~! < 1 in Lemma 6.2 and bounding the spectral norm by the maximum norm,

—1
—1
1M [[spec < tfgagL(Tt [T(e— Tt)) > Toy - Tl g

- (<L U1 <lo<..<lp_7<L

(#t £1,89,..., Ly _p#L
-1
< max (Tt H (¢ — Tt)> .
= (<L
i#t
Notice that hy < €% and
hg —h _
Ire = ml = ‘ (he —Zs)(htt— s) >t |he — he|.
Consequently,
M~ |lspec < max (e"((L*”‘“Zt#SL 9 TT Ihe — htr1>
i<k (<L
=
as required. O

The following lemma is a direct result of van der Corput’s lemma with an amplitude function (see
for example [Hux96, Lemma 5.1.4], the details of the proof can be found in [TY20, Lemma 3.3]
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Lemma 6.4 (localized van der Corput’s lemma). Let J be a compact interval. Let ¢ : J — R be a
smooth function, let g be a real, differentiable function, and

Vang, 1 (s) := max|o! (s)].
If %) has at most C zero on J and A > 0 is so that
Vang, 1,(s) > X
holds throughout J, then
| oteretoten ds < Vit
where V(g) is the total variation of g plus the value of g at either endpoint of J.

Proof of Proposition 6.1. Combining (6.4) and Lemma 6.3 yields

O((L—1)qe+ -1 142(1-L)0
Van,, 1.(s) > I%az( et (B Y 0necr ae) H [he — hel N1H20-L)8
(<L
(#t
The derivatives of the phase function ¢ have a uniformly bounded number zeros (independent of h and
7). Thus Lemma 6.4 applies and we infer

1/L
el tum e O((L—1)qi+ B
Zt;ﬁI{SL qe) 1
I(h,r) < fu(pg)Ng (g, 5) (rira 1) =0V 2 rtngazi e e Z|<|L |he — htl
Gt
O

7 Proof of Lemma 3.2

As demonstrated above, by extracting the various main terms and applying the B-process we conclude
that

1 1
Km(N)={ lim Mp(N) | +0 | — n(r,h) On | +0(1)
m (N—)oo P;@m N™ h,%,u (T‘17‘2 ... rm)(®+1)/2
as N — oco. Inserting the bound (6.1), we deduce
1 1
Err:= — n(r,h) On
e h,g,u (ryrg - rm ) (OFD/2
1/m
1 et tum —up 0(m—1)gi+3 -
_— - t£0< L qc) _ 1
< ym n(r, )T1T2~~~7"m Ru(p)Ng (#073)%3:;( e e ¢ 11 1he = hel
h,q,r,u i<m
i#t
n \1/(©-1) o o 0
Recall that pg = r; (ﬁ—) , thus, the condition imposed by 37, Mg (19, s) implies that h; < N7.

Now we can bound the sum over h by using a generalized version of Holder’s inequality. That is we fix
exponents 1/p; +1/p2 -+ 1/pm—1 = 1. In this case, choose p; = m for i <m — 2 and p,,—1 = m/2

ST the el < 3257 |2 T e — 0

h (<m t=1 h; hy £<m
£t it it
2/m S 1/m
< mz Z‘hm—l_h1|_1/2 H Z|he—h1|_l
no | \m =2 \'m
1>

< log(N)%Ne(mfl)Ne/m < NOm=1)+1/m)+e

Thus
(m2+4+m—1)0—1

Err < N m +e,
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Hence, if 6§ < 1/(m? + m — 1), and ¢ > 0 is taken small enough, then Err = o(1). From there, the
decomposition at the start of Section 4 and a standard approximation argument are enough to establish
Theorem 1.1. O
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