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The Farey sequence is the set of rational numbers with bounded denominator. We

introduce the concept of a generalized Farey sequence. While these sequences arise

naturally in the study of discrete and thin subgroups, they can be used to study inter-

esting number theoretic sequences—for example rationals whose continued fraction

partial quotients are subject to congruence conditions. We show that these sequences

equidistribute and the gap distribution converges and answer an associated problem in

Diophantine approximation. Moreover, for one example, we derive an explicit formula

for the gap distribution. For this example, we construct the analogue of the Gauss

measure, which is ergodic for the Gauss map. This allows us to prove a theorem about

the associated Gauss–Kuzmin statistics.

1 Introduction

Consider the classical Farey sequence of height Q:

F̃Q :=
{

p

q
∈ [0, 1) : (p, q) ∈ Ẑ2, 0 < q < Q

}
, (1.1)

where Ẑ2 denotes the set of primitive vectors in Z2. Naturally, this sequence is a

fundamental object in number theory dating back to 1802 with its introduction by Haros

and subsequent work by Farey and Cauchy. For example, this sequence has connections
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2 C. Lutsko

to the Riemann hypothesis (see e.g., [10]) and plays a fundamental role in Diophantine

approximation.

In this paper, we generalize the Farey sequence. For concreteness, one example

of such a generalized Farey sequence is given by the following: throughout the paper,

we use the standard continued fraction notation

[
a0; a1, . . . an

] = a0 + 1

a1 + 1
a2+ ...

an

(1.2)

(see e.g., [9]) then denote

Q4 := {[
0; a1, . . . ak

]
: k ∈ N , ai ∈ 4Z �=0 ∀i

}
, (1.3)

that is, rationals whose continued fraction expansions involve only multiples (possibly

negative) of 4. The generalized Farey sequence in this context is

F̂Q = {p

q
∈ Q4 : 0 < q < Q, gcd(p, q) = 1

}
; (1.4)

we return to this example in Section 1.1 where we give a geometric interpretation of

these sets. To see some of the points of Q4, see Figure 1.

There is a geometric interpretation of the classical Farey sequence, which will

play an integral role in this paper. Consider the groups G = PSL(2,R) and � :=
PSL(2,Z) < G. G acts on the hyperbolic half-space, H via Möbius transformations (see

Section 2). As � is a lattice, there exists a tessellation of H into disjoint, finite volume

subsets such that � acts transitively on them. These fundamental domains are not

compact as each one contains a point on the boundary ∂H = R ∪ {∞}, at the end of a

cusp. The set of such cuspidal points is exactly

(�/�∞)∞ = Q (1.5)

(we use Gx to denote the stabilizer of x in a group G). That is, the set of cuspidal points

can be written as the �-orbit of the point at ∞ ∈ ∂H, which corresponds to the rationals.

Thus, the Farey sequence of height Q can be written

F̃Q =
{

p

q
∈ (�/�∞)∞ : (p, q) ∈ Ẑ2, 0 < q < Q

}
(1.6)
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Farey Sequences for Thin Groups 3

Fig. 1. Above we show some of the points in Q4. The graph was generated as follows: we generated

all words of length 10 (with respect to the two generators applied to ∞). Then separated the

interval [0, 1) into bins of size 10−5. The above is a bar chart showing the number of points in

each bin. Note that the sequence is supported on a fractal subset of the interval. This does not

show F̂Q (as the cut-off is with respect to word length), however will suffice for a qualitative

picture.

—the points in the �-orbit of the point at ∞ ∈ ∂H with denominator less than Q. The

goal of this paper is to consider a generalization of this setup, where we replace �

by a general (possibly infinite covolume) discrete subgroup. For our example (1.4), the

corresponding subgroup is the Hecke group

�̂ =
〈(

1 4

0 1

)
,

(
0 1

−1 0

)〉
. (1.7)

Most of our theorems hold for general subgroups. Hence, let � < PSL(2,R) be a

general non-elementary, finitely generated subgroup in G with critical exponent δ�. In

our context, 1/2 < δ� ≤ 1 and δ� is equal to the Hausdorff dimension of the limit set of

the subgroup (we introduce these definitions in Section 2). Furthermore, assume � has

a cusp at ∞ and let �∞ = (�/�∞)∞ ⊂ ∂H denote the orbit of ∞. Hence, �∞ is the set of

the cusps located at points on the boundary, isomorphic to ∞. Finally, we assume that

�∞ = 〈(
1 1
0 1

)〉
. That is, that the fundamental domain is periodic with period 1 along the

real line. Note that �̂ has period 4. However, a scaling could be applied to give it period

1 (in order to preserve the continued fraction description we refrain from doing so).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab036/6226703 by guest on 30 July 2021



4 C. Lutsko

Let

Z := {(p, q) ∈ (0, 1)�} ⊂ R2 (1.8)

denote the analogue of primitive vectors and define

FQ :=
{

p

q
∈ [0, 1) : (p, q) ∈ Z, 0 < q < Q

}
=
{

p

q
∈ �∞ : 0 ≤ p < q < Q

}
.

(1.9)

FQ is the primary object of study for this article, which we call a generalized Farey

sequence (occasionally, gFs). In Subsection 3.1, we show that asymptotically there exists

a constant 0 < c� < ∞ such that

|FQ| ∼ c�Q2δ� . (1.10)

The goal of the paper is to establish the Theorems in Sections 4–9, which we

describe briefly here. As the statements of the theorems require the use of fractal

measures, we present them formally only after presenting the necessary notation

(readers familiar with Patterson–Sullivan theory may wish to skip ahead and see

the theorems now). Sections 2 and 3 present some background and preliminary work.

Subsequently, the main results of the paper are as follows:

• Counting primitive points: in Section 4, we present a theorem for the

equidistribution of the horocycle flow in infinite volume subgroups (proved

by Oh and Shah [17]). Then we show how this equidistribution result can

be used to prove a technical theorem about counting primitive points in

a sheared set (Theorem 4.3) and another technical theorem about counting

primitive points in a rotated set (Theorem 4.5). These theorems generalize

the analogous result for lattices in [16].

• Diophantine approximation by parabolics: we prove two theorems in metric

Diophantine approximation in Fuchsian groups. These are the analogues of

the Erdös–Szüsz–Turán and Kesten problems in the infinite volume setting.

In the classical setting, these problems were solved using homogeneous

dynamics by Marklof [12, Theorem 4.4] and Athreya and Ghosh [2]. Moreover,

Xiong and Zaharescu [24] and Boca [6] solved the problem using number

theoretic methods (by applying the BCZ map). Extending classical results
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Farey Sequences for Thin Groups 5

in metric Diophantine approximation to the setting of Fuchsian groups

is not new and was done by Patterson [18] who proved Dirichlet and

Khintchine type theorems for such parabolic points. More recently, for

example Beresnevich et al. [4] studied the equivalent problems for Kleinian

groups.

In the same section, we show that Theorem 4.5 allows us to prove that there

is a limiting distribution for the direction of primitive points, Z, as viewed

from the origin. This problem has not been addressed in the Euclidean

setting except for lattices [16].

• Equidistribution of gFs: Theorem 6.1 states that the gFs equidistributes

over a horospherical section. In a series of papers [13, 14], Marklof showed

that the (classical) Farey sequence, when embedded into a horosphere,

equidistributes on a particular section. This equidistribution theorem was

then used to show that the spatial statistics of the Farey sequence converge.

This was followed by work of Athreya and Cheung [1] who (in dimension

d = 2) were able to construct a Poincaré section for the horocycle flow such

that the return time map generates Farey points. We restrict our attention

to proving the equidistribution result in this more general setting. Heersink

[8] generalized [13] to certain congruence subgroups of � (still in the finite

covolume setting). Furthermore, the method of [1] has been generalized to

more general subgroups such as Hecke triangle groups (e.g., [23]). However,

we will not discuss this approach here.

• Convergence of local statistics: Theorem 7.1, as a consequence of

Theorem 4.3 and Theorem 6.1, states that two sorts of local statistics

converge in the limit. A corollary of one of these is that the limiting gap

distribution exists. This distribution in the classical setting was originally

calculated by Hall [7] (and is known as the Hall distribution) and has been

studied by many people since. The Hall distribution was originally put into

the context of ergodic theory in [3].

• An explicit formula for the gap distribution: in Section 8, we restrict to the

example �̂. For this example, we show that the limiting gap distribution can

be explicitly written as an integral over a compact region. While the integral

involves a fractal measure, this is the 1st time such an explicit formula has

been calculated in the infinite volume setting. There is much interest in

finding explicit formula for limiting gap distributions for projected lattice

point sets and the infinite covolume analogue. The only instance (to our
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6 C. Lutsko

knowledge) of such explicit examples are those covered in [19]. In that

paper, Rudnick and Zhang used the relation between Farey points and Ford

circles to produce examples for which they could express the limiting gap

distribution explicitly (recovering, in one instance, the Hall distribution).

In Section 1.1, we show that the Farey sequence for �̂ can also be used to

generate a (sparse) Ford configuration, which leads to our result.

• Ergodicity of a new Gauss-like measure: continuing to work with the

example �̂, we show that a new fractal measure takes on the role of the

Gauss measure (Theorem 9.2). That is, this measure is ergodic for the Gauss

map. As an application, we show that this ergodicity implies convergence

to an explicit function of the Gauss–Kuzmin statistics in our context. This

section takes inspiration from [20] where Series showed how the Gauss

measure can be viewed as a projection of the Haar measure on a particular

cross-section.

1.1 Ford configurations for �̂

To give some further intuition for generalized Farey sequences, in this section, we show

that the gFs for �̂ admits a simple geometric interpretation, which we shall return to in

Section 8. Returning to our example F̂Q—(1.4), note that

�̂∞ = Q4. (1.11)

To see this, simply note that the two generators in (1.7) correspond to the maps f (x) =
x + 4 and g(x) = −1

x , which generate these continued fractions.

Consider the action of �̂ on an initial configuration of circles in the closure H:

K0 := (C0, C1, C2, C3)

C0 = R , C1 = R + i , C2 = C(i/2, 1/2) , C3 = C(i/2 + 4, 1/2)

(1.12)

where C(z, r) is a circle located at z ∈ H of radius r. We are interested in the resulting

sparse Ford configuration, K := �̂K0, shown in Figure 2. Any group element in �̂ can be

decomposed into a composition of circle inversions through vertical lines at 0 and 4 and

C(0, 1) and C(4, 1) (these are also shown in Figure 2).

Let AT denote the set of tangencies with C0 in [0, 1] such that the circle tangent

to C0 has diameter larger than T−1. The way we have constructed the packing K, these
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Farey Sequences for Thin Groups 7

Fig. 2. Diagram of a portion of K. The dotted lines represent the circle inversions corresponding

to the subgroup �̂. The white circles (including the x-axis and horizontal line above) represent the

initial configuration K0 = (C0, C1, C2, C3). The filled-in circles represent some of the images.

tangencies are exactly the cuspidal points of the group (i.e., the tangencies are located

on the orbit �̂∞). Moreover, one can easily show if a circle in this packing is tangent

to C0 at p/q in reduced form then the diameter is given by 1/q2. Hence, AQ2 = F̂Q, that

is, the set of tangencies of circles with diameter greater than Q2 is exactly the gFs of

height Q.

Given an interval I ⊂ [0, 1], let AT,I = AT ∩ I. We label the elements of AT =
{xj

T,I}#AT,I
j=1 such that xj

T,I < xj+1
T,I for all j. The gap distribution is then

F̂T,I(s) :=
#
{
i ∈ [1, #AT,I) : T(xj+1

T,I − xj
T,I) ≤ s

}
Tδ�̂

(1.13)

for s > 0.

In Section 8, we show that the limiting gap distribution can be explicitly

calculated as a sum of integrals over compact regions involving a fractal measure

presented below. This allows us to show that all gaps have size bigger than s < 2 (not

just in the limiting case) and to say something more about the regularity of F and the

growth of the derivative.

Remark. Of course different subgroups generate different sparse Ford configurations

and have other interesting relations to continued fractions (and hence Diophan-

tine approximation). We only address this (simplest) example here. That said, our

methods generalize without additional effort to any Hecke subgroup of the form

�c = 〈(
1 c
0 1

)
,
(

0 −1
1 0

)〉
for c ∈ R>2 (the corresponding continued fraction description will

involve c rather than 4 and this loses some elegance for non-integer c).
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8 C. Lutsko

2 Background—Hyperbolic Geometry

Consider the action of G on H via Möbius transformations: for z ∈ H and g = (
a b
c d

) ∈ G

gz = az + b

cz + d

zg = tgz = az + c

bz + d
.gz = az + c

bz + d
.

(2.1)

Let Xi ∈ T1(H) denote the vector pointing upwards based at i. Denote

• K = StabG(i), hence H ∼= G/K.

• A—a one parameter subgroup corresponding to the unit speed geodesic

flow, Gr, on T1(H). For Xi, the action of A corresponds to multiplication by

�t = (
et/2 0

0 e−t/2

)
.

• N− :=
{

n−(x) =
(

1 x

0 1

)
: x ∈ R

}
, the contracting horosphere for �t.

• N+ :=
{

n+(x) =
(

1 0

x 1

)
: x ∈ R

}
, the expanding horosphere for �t.

We identify points in G with points in T1(H) via the map g �→ gXi and points in G/K we

identify with points in H via the map g �→ gi.

2.1 Measure theory on infinite volume hyperbolic manifolds

To construct the appropriate measures, we require the following definitions. For a point

u ∈ T1(H), denote the forward and backward geodesic projections

u± = lim
r→∞Gr(u). (2.2)

Moreover, for g ∈ G, we denote g± = g(Xi)
±. Let L(�) ⊂ ∂H—the limit set—denote the set

of accumulation points of any orbit under �. A classical result in the field states that

the Hausdorff dimension of L(�) is the critical exponent δ� [21].

Given a boundary point ξ ∈ ∂H and two points in the interior x, y ∈ H, define the

Busemann function to be

βξ (x, y) := lim
t→∞ d(x, ξt) − d(y, ξt), (2.3)
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Farey Sequences for Thin Groups 9

where ξt is any geodesic such that limt→∞ ξt = ξ . In words, the Busemann function

measures the signed distance between the horospheres containing x and y based at ξ .

Define a �-invariant conformal density of dimension δμ > 0 to be a family,

{μx : x ∈ H} of finite, Borel measures on the boundary ∂H such that

γ∗μx(·) := μx(γ −1·) = μγ x(·), dμx

dμy
(ξ) = eδμβξ (y,x), (2.4)

for any y ∈ H, ξ ∈ ∂H and γ ∈ �. Patterson [18] (in dimension 2) and Sullivan [21]

(in higher dimensions) constructed a �-invariant conformal density of dimension δ�

supported on the limit set L(�). We denote this conformal density νx. Moreover, let mx

denote the G-invariant density of dimension 1 (the Lesbegue density).

Given a point u ∈ T1(H), let π(u) denote the projection to H and let s =
βu−(i, π(u)). From there, define the following measures:

• The Burger–Roblin measure

dmBR(u) = eδ�βu− (i,π(u))eβu+ (i,π(u))dνi(u
−)dmi(u

+)ds (2.5)

is supported on {u ∈ T1(H) : u− ∈ L(�)} and is finite on �\G iff �\G has

finite volume (in which case the Burger–Roblin measure is equal to the Haar

measure).

• The Bowen–Margulis–Sullivan measure

dmBMS(u) = eδ�βu− (i,π(u))eδ�βu+ (i,π(u))dνi(u
−)dνi(u

+)ds (2.6)

is supported on {u ∈ T1(H) : u± ∈ L(�)} and is finite on �\G.

Now define the Patterson–Sullivan measure (for N−) on ∂H � R to be

dμPS(x) := eδ�βx(i,i+x)dνi(x). (2.7)

Note that supp(μPS) = L(�). We will primarily use this Patterson–Sullivan measure;

however, we also use one associated to the expanding horospherical subgroup N+,

defined as

dμPS
N+(x) := e

δ�β 1
x

(i, i
xi+1 )

dνi(
1

x
). (2.8)
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10 C. Lutsko

3 Preliminary Results

3.1 Proof of (1.10)

Proof of (1.10). A rational a
b belongs to FQ if and only if there exists a γ = (

a ∗
b ∗

) ∈
�/�∞ and 0 < a < b < Q. Using the standard Iwasawa decomposition, one can write

γ =
(

cos θ − sin θ

sin θ cos θ

)(
y1/2 0

0 y−1/2

)
(3.1)

where a = cos θy1/2 and b = sin θy1/2. Therefore, the problem is equivalent to counting

#
{
γ ∈ �/�∞ : (θ , y) ∈ 


}
, (3.2)

where 
 := {(θ , y) : 0 < y1/2 cos θ < y1/2 sin θ < Q}. Counting the asymptotic number of

points in such a sector is the content of [5] (see Theorem 8.5 below).

Below to prove Proposition 8.6, we perform this calculation more carefully (and

will calculate the constant in that context; thus, we leave the details till then). �

3.2 Gauss-type decomposition

Let My := (
y−1
2 0
y1 y2

)
, for y ∈ R2. In what follows, we will need the following decomposition

of T1(H).

Proposition 3.1. For any φ ∈ Cc(T
1(H)) and any set A ⊂ R2,∫

N−{My:y∈A }
φ(hMy) dmBR(hMy) = 2

∫
R×A

φ(n−(x)My)y2δ�−2
2 dy2 dy1 dμPS(x). (3.3)

Proof. The goal is to understand the forwards and backwards orbits of u = hMyXi

(where h ∈ N−). First, we note that

u− = (hMyXi)
− = hX−

i (3.4)

(this follows from the definition of the stable and unstable directions of the geodesic

flow). Hence, we can write the following:

s := βu−(i, π(u))

= βX−
i
(h−1i, Myi).

(3.5)
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Farey Sequences for Thin Groups 11

Inserting the definition of the Busemann function and using its invariance properties

then give

s = lim
t→∞ d(h−1i, �−ti) − d(Myi, �−ti)

= lim
t→∞ d(i, �−ti) − d(Myi, �−ti) + d(h−1i, �−ti) − d(i, �−ti).

(3.6)

Now setting r0(h) = βhX−
i
(i, hi) gives

s = lim
t→∞ t − d(

(
y−1
2 0
0 y2

)
i, �−ti) + r0(h)

= lim
t→∞ t − t + 2 ln y2 + r0(h)

= 2 ln y2 + r0(h).

(3.7)

Thus,

ds = 2dy2

y2
. (3.8)

Moreover, we note that by definition

eδ�r0(n−(x))dνi(n−(x)Xi) = dμPS(x). (3.9)

Next consider the measure

dλg(z) = e
β(hMyXi)

+ (i,hMyi)
dmi((hMyXi)

+), (3.10)

with g = h
(

y−1
2 0
0 y2

)
and z = n+(y−1

2 y1). We can write (using the G-invariance of m)

= e
β(gzXi)

+ (i,gzi)
dmi((gzXi)

+)

= e
β(gzXi)

+ (i,gzi)
dmg−1i((zXi)

+)

(3.11)

and then using the definition of conformal densities:

= e
(β(gzXi)

+ (i,gzi)+β(zXi)
+ (i,g−1i))

dmi((zXi)
+)

= e
β(zXi)

+ (i,zi)
dmi((zXi)

+).
(3.12)
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12 C. Lutsko

Hence, dλg = dλe and in particular λe is N+-invariant. Hence, it is the Haar measure on

N+. Thus, we have (for y2 fixed)

dλg(z) = dz = y−1
2 dy1. (3.13)

Inserting (3.4), (3.7), (3.8), (3.9), and (3.13) into the definition of the BR-measure we

get (3.3). �

3.3 Global measure formula

The last theorem from the literature we require is the so-called global measure formula

stated by Stratmann and Velani [22, Theorem 2], which requires some set up. In actuality,

we only use the simpler Corollary 3.3. As stated in [22], there exists a disjoint, �-

invariant collection of horoballs H such that (C� \ H )/� is compact, where C� is the

convex hull of L(�).

We let η ∈ L(�) be a parabolic limit point. Define ηt to be the unique point along

the geodesic connecting i to η whose hyperbolic distance from i is t. And define

b(x) =
⎧⎨⎩0 if x ∈ H \ H

d(x, ∂Hη) if x ∈ Hη ∈ H
, (3.14)

where Hη is the horoball at η.

Theorem 3.2 ([22, Theorem 2]). There exists a constant 0 < C < ∞ such that for any

η ∈ L(�), a parabolic cusp, and for any t > 0,

C−1e−δ�teb(ηt)(1−δ�) ≤ νi(B(η, e−t)) ≤ Ce−δ�teb(ηt)(1−δ�) (3.15)

where B(η, e−t) ⊂ ∂H is the ball centered at η of radius e−t

Corollary 3.3. Assume that η ∈ L(�) is a parabolic cusp; in a small ball around η, we

can approximate the measure:

dνi(η + h) ≤ h2δ�−2dh. (3.16)

This corollary follows by differentiating (3.15) with h = e−t and by noting

b(ηt) ≤ t.
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Farey Sequences for Thin Groups 13

4 Horospherical Equidistribution

Consider an unstable horosphere for the geodesic flow �t, N+. We parameterize the

projection by n+ : T → � ∩ N+\�N+. [11,Theorem 3.3] (which follows from [17, Theorem

3.6]) states

Theorem 4.1. Let λ be a Borel probability measure on T with continuous density

with respect to Lebesgue. Then for every f : T × �\G → R compactly supported and

continuous

lim
t→∞ e(1−δ�)t

∫
T

f (x, n+(x)�t) dλ(x) = 1

|mBMS|
∫
T×�\G

f (x, α)λ′(x) dμPS
N+(x) dmBR(α). (4.1)

Furthermore, this theorem can be applied to characteristic functions (this

follows in the same way as [11, Corollary 3.5]).

Corollary 4.2. Let λ be a Borel probability measure on T with continuous density with

respect to Lebesgue. Let E ⊂ T × �\G be a compact set with boundary of (μPS
N+ × mBR)-

measure 0. Then

lim
t→∞ e(1−δ�)t

∫
T

χE (x, n+(x)�t) dλ(x) = 1

|mBMS|
∫
T×�\G

χE (x, α)λ′(x) dμPS
N+(x) dmBR(α).

(4.2)

4.1 Counting primitive points in sheared sets

As a straightforward consequence of Corollary 4.2, we have the following theorem,

which (in Sections 5 and 7) we show has a number of important consequences.

Theorem 4.3. Let λ be a Borel probabilty measure on T with continuous density

with respect to Lebesgue. Let A ⊂ R2 be a compact set with boundary of Lebesgue

measure 0. Then for every k ≥ 1:

lim
t→∞ e(1−δ�)tλ

({x ∈ T :
∣∣Zn+(x)�t ∩ A)

∣∣ = k}) = Cλ

|mBMS|m
BR({α ∈ �\G : |Zα ∩ A| = k}),

(4.3)

where Cλ = μPS
N+(λ′).
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14 C. Lutsko

Theorem 4.3 is an infinite covolume version of [16, Theorem 6.7]. The proof is a

straightforward consequence of Corollary 4.2 and the fact that if A is compact and has

boundary of Lebesgue measure 0, then

{g ∈ �\G : Zg ∩ A = k} (4.4)

is compact and has boundary of volume 0, and the Burger–Roblin measure of a 0 volume

set is 0.

Using [15, Theorem 6.10] in the same way, we used [17, Theorem 3.6] to derive

Theorem 4.1, we have

Theorem 4.4. Let A ⊂ R2 be a compact set with boundary of Lebesgue measure 0.

Then for every k ≥ 1:

lim
t→∞ μPS

N+
({x ∈ T :

∣∣Zn+(x)�t ∩ A)
∣∣ = k}) = |μPS

N+|
|mBMS|m

BMS({α ∈ �\G : |Zα ∩ A| = k}). (4.5)

In words, each of these two theorems is asking for the limiting probability that

a randomly sheared set contains k points. In one instance (Theorem 4.3), we randomly

shear the set with measure λ and in the other (Theorem 4.4) we use the measure μPS
N+ .

4.2 Counting primitive points in rotated sets

Similarly to Section 4.1, one can ask about the probability of finding k primitive points

in a randomly rotated set (as oppose to a randomly sheared one). In [11, Section 6],

we show that similar equidistribution results to Theorem 4.1 and Corollary 4.2 also

hold when the horospherical subgroup N+ is replaced with the rotational subgroup,

K. Parameterize the rotation subgroup K by the boundary ∂H in the natural way

x �→ R(x) = (
cos 2πx sin 2πx

− sin 2πx cos 2πx

)
. Then the rotational Patterson–Sullivan measure is defined

to be

dμPS
K (x) = eβx(i,R(x)(ei))dνi(x). (4.6)

Note μPS
K is supported on L(�). Hence, the analogous theorem to Theorem 4.3 follows

from [11, Corollary 6.2] (in exactly the same way that Theorem 4.3 follows from

Corollary 4.2):
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Farey Sequences for Thin Groups 15

Theorem 4.5. Let λ be a Borel probability measure on T with continuous density

with respect to Lebesgue. Let A ⊂ R2 be a compact subset with boundary of Lebesgue

measure 0. Then for every k ≥ 1

lim
t→∞ e(1−δ�)tλ

({x ∈ T :
∣∣ZR(x)�t ∩ A

∣∣ = k}) = Dλ

|mBMS|m
BR({α ∈ �\G : |Zα ∩ A| = k}) (4.7)

where Dλ = μPS
K (λ′).

5 Consequences of Theorems 4.3 and 4.5

5.1 Diophantine approximation in Fuchsian groups

Theorem 4.3 can be used to prove several statements about the set of numbers, which

can be approximated by parabolic points in the limit set of the Fuchsian groups studied

here. In particular, as discussed in [2], Erdös–Szüsz–Turán (henceforth abbreviated

EST) introduced the following problem in Diophantine approximation: what is the

probability that a uniformly chosen point, x ∈ [0, 1], satisfies

∣∣∣∣x − p

q

∣∣∣∣ ≤ A

q2 (5.1)

for p
q ∈ Q with q ∈ [θQ, Q] for a fixed triple (A, θ , Q) ∈ R>0 × (0, 1) ×R>0? Hence, if we let

EST(A, θ , Q) be the random variable: the number of solutions to (5.1), the EST problem

is to prove the existence of

lim
Q→∞P(EST(A, θ , Q) > 0). (5.2)

The limiting distribution for this random variable is given in [2] in great generality.

Our goal in this section is to understand the same problem with the rationals replaced

by �∞.

Given a triple (A, θ , Q) as above and a number x, define (the analogue of the

random variable EST), E(A, θ , Q) to be the number of solutions, (p, q) ∈ Z, to

|p − qx| ≤ A

q
, (5.3)

with q < Q.
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16 C. Lutsko

Theorem 5.1. Given (A, θ) ∈ R>0 × (0, 1). Let λ be a Borel probability measure on [0, 1),

with continuous density with respect to Lebesgue. Then

lim
Q→∞ Q2(1−δ�)λ({x ∈ [0, 1) : E(A, θ , Q) = k}) = Cλ

|mBMS|m
BR({α ∈ �\G : |Zα ∩ CA,θ | = k}),

(5.4)

where

CA,θ := {(x1, x2) ∈ R × R : |x1|x2 ≤ A : θ < x2 < 1}. (5.5)

Moreover,

lim
Q→∞ μPS

N+({x ∈ L(�) ∩ [0, 1) : E(A, θ , Q) = k}) = 1

|mBMS|m
BMS({α ∈ �\G : |Zα ∩ CA,θ | = k}).

(5.6)

Proof. Write (5.4) as (with Q = et/2)

lim
t→∞ e(1−δ�)tλ

({
x ∈ [0, 1] : #

{
(p, q) ∈ Z : (p, q)

(
1 0

−x 1

)(
Q 0

0 Q−1

)
∈ CA,θ

}
= k

})

= lim
t→∞ e(1−δ�)tλ

({
x ∈ [0, 1] : #

(
Zn+(−x)�t ∩ CA,θ

) = k
})

. (5.7)

To which we apply Theorem 4.3 to get (5.4).

Equation (5.6) follows in the same way except, in the last step, we apply

Theorem 4.4 instead of Theorem 4.3. �

Moreover, the same proof allows one to prove the Kesten problem in our context,

stated as follows: for A > 0 and Q fixed let K(A, Q) denote the number of solutions to

|αq − p| ≤ A

Q
, 1 ≤ q ≤ Q. (5.8)

In this case, the following theorem holds:

Theorem 5.2. Given A > 0, Theorem 5.1 holds with E(A, θ , Q) replaced by K(A, Q) and

CA,θ replaced by

RA = {
(x, y) ∈ R2 : |x| ≤ A, 0 ≤ y ≤ 1

}
(5.9)
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Farey Sequences for Thin Groups 17

5.2 Directions of primitive points

Given a point in R2 (taken here to be the origin, however this is not necessary), one can

ask how the directions of primitive points Z distribute for an observer at that point.

The corollary of Theorem 4.5 below answers this question.

Let Dt(σ , v) ⊂ S1
1 be the interval in the unit sphere with center v and length σe−t,

and set

Nt(σ , v;Z) := #
{
y ∈ Zt : ‖y‖−1y ∈ Dt(σ , v)

}
, (5.10)

where Zt = {z ∈ Z : ‖z‖ ≤ et}.

Corollary 5.3. Let λ be a probability measure on T, with continuous density with

respect to Lebesgue. For k ∈ N>0, we have

lim
t→∞ e(1−δ�)tλ

({v ∈ T : Nt(σ , v;Z) = k}) = Dλ

|mBMS|m
BR ({α ∈ �\G : |Zα ∩ Cσ | = k}) (5.11)

where, in polar coordinates

Cσ = {
x = (r, θ) ∈ R2 : r < 1, |θ | < σπ

}
. (5.12)

This corollary follows directly from Theorem 4.5.

6 Equidistribution of gFs

6.1 Statement

In addition to Theorem 4.3, another important consequence of the equidistribution

statements in Section 4 is the following theorem, stating that the gFs equidistributes

on a horospherical section. This is a generalization of [13, Theorem 6], to the infinite

covolume setting.

Theorem 6.1. Let σ ∈ R and Q = e(t−σ)/2. Let f : T × �\G → R be bounded continuous

and supported on a set with finite volume. Then

lim
t→∞ e−δ�t

∑
r∈FQ

f (r, n−(r)�−t) = e(δ�−1)σ

|mBMS|
∫
T×T

∫ ∞

σ

f̃ (x, n−(w)�−r)eδ�r dr dμPS(w) dμPS
N+(x)

(6.1)

where f̃ (x, α) := f (x, tα−1).
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18 C. Lutsko

Remark. Marklof [13] and [14] treat Farey sequences in general dimension. However,

in the infinite covolume setting, equidistribution results for SL(d,R) have not yet been

proved (to our knowledge).

6.2 Proof

Proof of Theorem 6.1. The proof will follow the same lines as [13, Proof of Theorem

6] with several exceptions as we are not working with Haar measure.

Note first that by setting f (x, α) = f0(x, α�−σ ) for f0 bounded and continuous we

may assume that σ = 0.

Step 1: first, we show that we can reduce the theorem to f compactly supported via

a standard approximation argument. Assume the theorem holds for com-

pactly supported functions. Now consider a bounded, continuous function,

f supported on a finite-volume set. Fix ε > 0 and consider (for some t) the

difference∣∣∣∣∣∣e−δ�t
∑

r∈FQ

f (n−(r)�−t)) − 1

|mBMS|
∫
T

∫ ∞

0
f̃ (n−(w)�−r)eδ�r dr dμPS(w)

∣∣∣∣∣∣ . (6.2)

Now decompose f = f1+f2 such that f1 is supported on a compact set and f2 is supported

on a set of volume � > 0 (as supp(f ) has finite volume � can be chosen arbitrarily small)

and both are bounded and continuous. Hence, the difference (6.2) is bounded above by

∣∣∣∣∣∣e−δ�t
∑

r∈FQ

f1(n−(r)�−t)) − 1

|mBMS|
∫
T

∫ ∞

0
f̃1(n−(w)�−r)eδ�r dr dμPS(w)

∣∣∣∣∣∣
+
∣∣∣∣∣∣e−δ�t

∑
r∈FQ

f2(n−(r)�−t)) − 1

|mBMS|
∫
T

∫ ∞

0
f̃2(n−(w)�−r)eδ�r dr dμPS(w)

∣∣∣∣∣∣ . (6.3)

Applying Theorem 6.1 for compact functions implies we can take t large enough that the

1st term is less than ε/2.

We may assume that f2 is supported on the cusp at infinity, that is, supp(f2) =
{z ∈ H : �(z) > �−1}. With that, using the bounded property of f , there exists a C < ∞
such that ∣∣∣∣∣∣∣∣FQ

∣∣−1
∑

r∈FQ

f2(n−(r)a−t)

∣∣∣∣∣∣ ≤ C#{r ∈ FQ : �(π1(n−(r)a−t)) > �−1}∣∣FQ

∣∣ (6.4)
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Farey Sequences for Thin Groups 19

where π1 denotes the projection to the fundamental domain above i extending to infinity.

This proportion can be upper bounded by
C|F�Q|
|cFQ| = C�2δ� for some constant C < ∞. Thus,

by choosing � large enough the summation in the right-hand term in (3) can be bounded

by ε/4.

Lastly, consider the term

∣∣∣∣∫
T

∫ ∞

0
f̃2(n−(w)a−r)e

δ�r dr dμPS(w))

∣∣∣∣ < ∞. (6.5)

As � has a cusp, δ� > 1/2. Thus, the Patterson–Sullivan measure of supp(f̃2) ∩ L(�) goes

to 0 as vol(supp(f̃2)) goes to 0. Hence, we can choose � such that (6.2) is bounded by

ε. Thus, Theorem 6.1 for compactly supported f implies the theorem for f with finite

volume support.

Henceforth, take f to be compactly supported.

Step 2: note that because f is continuous and has compact support it is uniformly

continuous. Hence, for every � > 0, there exists a ε > 0 such that for all

(x, α), (x′α′) ∈ R × G

|x − x′| < ε d(α, α′) < ε (6.6)

imply |f (x, α) − f (x′, α′)| < �

Step 3: for 0 ≤ θ < 1 and ε > 0, define

FQ,θ :=
{

p

q
∈ [0, 1) : (p, q) ∈ Z, θQ < q < Q

}
(6.7)

Fε
Q :=

⋃
r∈FQ,θ+Z

{
x ∈ R : ‖x − r‖ < εe−t} . (6.8)

The latter we can write as

Fε
Q =

⋃
a∈Z

{
x ∈ R : (a1, a2)n+(x)�t ∈ Cε

}
, (6.9)

where

Cε := {(y1, y2) ∈ R2 : |y1| < εy2, θ < y2 ≤ 1}.
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20 C. Lutsko

Our goal is to write the characteristic function for Fε
Q as a sum over simpler

characteristic functions, which can write as a disjoint union. Thus, let

Hε :=
⋃
a∈Z

Hε(a), Hε(a) := {α ∈ G : (a1, a2)α ∈ Cε}. (6.10)

By considering the bijection

�N−\� → Z, �N−γ �→ (0, 1)γ

we can write

Hε =
⋃

γ∈�N−\�
Hε((0, 1)γ )

=
⋃

γ∈�N−\�
γH1

ε ,
(6.11)

where

H1
ε := Hε((0, 1)) = H{My : y ∈ Cε}

with My :=
(

y−1
2 0
y1 y2

)
.

Step 4: Claim: given C ⊂ G compact, there exists an ε0 > 0 such that for all ε < ε0

γH1
ε ∩ H1

ε ∩ �C = ∅, (6.12)

for all γ ∈ �/�N− �= 1

Proof of Claim. Equation (6.12) is equivalent to

Hε((p, q)) ∩ H1
ε ∩ �C = ∅, ∀(p, q) �= (0, 1) ∈ Z. (6.13)

Consider an α ∈ G such that (p, q)α ∈ Cε . We can write any such α as

α =
(

1 b

0 1

)(
y−1

2 0

y1 y2

)
(6.14)

for b ∈ R and y1 ∈ R.
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Farey Sequences for Thin Groups 21

Therefore, if we assume for the sake of contradiction that (p, q)α ∈ Cε and

(0, 1)α ∈ Cε we have the following four inequalities

|y−1
2 p + (pb + q)y1| < εy2(pb + q) (6.15)

θ < y2(pb + q) ≤ 1 (6.16)

|y1| < εy2 (6.17)

θ < y2 ≤ 1. (6.18)

Using (6.16) and (6.17) gives that

|(pb + q)y1| < ε, (6.19)

which, plugging that into (6.15), gives

|y−1
2 p| < 2ε. (6.20)

Hence,

|p| < 2ε. (6.21)

Thus, p = 0. Therefore, (0, q) = (0, 1)γ for some γ ∈ �. However, since �∞ = 〈(
1 1
0 1

)〉
,

q = 1, which is a contradiction proving the statement. �

Step 5: the claim implies that for C ⊂ G compact there is an ε0 > 0 such that for

all ε < ε0 such that

Hε ∩ �C =
⋃

γ∈�/�N−

(γH1
ε ∩ �C) (6.22)

is a disjoint union. Thus, let χε and χ1
ε denote the characteristic functions of Hε and H1

ε ,

respectively, then

χε(α) =
∑

γ∈�N−\�
χ1

ε (γ α) (6.23)
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22 C. Lutsko

for all α ∈ �C. Moreover, all of the sets we consider have boundary of BR-measure 0.

Set χ̃ε(α) := χε(
tα−1) and note that χε(n+(x)�t) = χ̃ε(n−(−x)�−t) is the characteristic

function for Fε
Q Therefore, we write

∫
F ε

Q/Z

f (x, n−(x)�−t) dx =
∫
T

f (x, n−(x)�−t)χε(n+(−x)�t) dx

=
∫
T

f̃ (x, n+(−x)�t)χε(n+(−x)�t) dx,

(6.24)

to which we can apply Theorem 4.1 giving the following:

lim
t→∞ e(1−δ�)t

∫
F ε

Q/Z

f (x, n−(x)�−t) dx = 1

|mBMS|
∫

�\G×T

f̃ (x, α)χε(α) dmBR(α) dμPS
N+(x),

(6.25)

which we write this:

= 1

|mBMS|
∫

�N−\G×T

f̃ (x, α)χ1
ε (α) dmBR(α) dμPS

N+(x),

= 1

|mBMS|
∫

�N−\N−{My:y∈Cε}×T

f̃ (x, α) dmBR(α) dμPS
N+(x).

(6.26)

Step 6:

Using Proposition 3.1, we write (6.26) as (noting that (0, 1)n− = (0, 1))

= 2

|mBMS|
∫
T×{y∈Cε}×T

y2δ�−2
2 f̃ (x, n−(w)My) dy2 dy1 dμPS(w) dμPS

N+(x), (6.27)

which we can write

= 2

|mBMS|
∫
T×T

∫ 1

θ

∫
Bεy2 (0)

y2δ�−2
2 f̃ (x, n−(w)My) dy2 dy1 dμPS(w) dμPS

N+(x). (6.28)

Next we write D(y2) :=
(

y−1
2 0
0 y2

)
and note

d(My, D(y2)) = d(n+(y−1
2 y1), Id) ≤ ε (6.29)
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Farey Sequences for Thin Groups 23

for y ∈ Cε (this is the same calculation as [13, (3.42)]). Therefore, using the uniform

continuity of Step 2:

∣∣∣∣(6.26) − 2

|mBMS|
∫
T×T

∫ 1

θ

∫
B(εy2)

f̃ (x, n−(w)D(y2))y2δ�−2
2 dy2 dy1 dμPS(w) dμPS

N+(x)

∣∣∣∣
=
∣∣∣∣(6.26) − 4ε

|mBMS|
∫
T×T

∫ 1

θ

f̃ (x, n−(w)D(y2))y2δ�−1
2 dy2 dμPS(w) dμPS

N+(x)

∣∣∣∣
≤ 4�ε|μPS|2

|mBMS|
∫ 1

θ

y2δ�−1
2 dy2.

(6.30)

Evaluating this integral then gives that (6.30) is equal to

2ε�|μPS|2
|mBMS|δ�

(1 − θ2δ). (6.31)

Now, if we consider the left-hand side of (6.30) and insert (6.25) and finally

perform a change of variables writing y2 = er/2, we conclude that

∣∣∣∣∣ limt→∞ e(1−δ�)t
∫
F ε

Q/Z

f (x, n−(x)�−t) dx

− 2ε

|mBMS|
∫
T×T

∫ 2| ln θ |

0
f̃ (x, n−(w)�−t)eδ�r dr dμPS(h) dμPS

N+(x)

∣∣∣∣∣
<

2�ε|μPS|2
|mBMS|δ�

(1 − θ2δ� ). (6.32)

Step 7: to conclude, consider

lim
t→∞ e−δ�t

∑
r∈FQ,θ

f (r, n−(r)�−t) (6.33)

taking the asymptotic formula (1.10) and using a volume estimate together with uniform

continuity (see [13, (3.49)] for details) we can write this as

= lim
ε→0

lim
t→∞

e(1−δ�)t

et

et

2ε

∑
r∈Fθ ,Q

∫
|x−r|<εe−t

f (x, n−(x)�−t) dx, (6.34)

which is equal

= lim
ε→0

lim
t→∞

e(1−δ�)t

2ε

∑
r∈Fθ ,Q

∫
|x−r|<εe−t

f (x, n−(x)�−t) dx (6.35)
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24 C. Lutsko

Then using the disjoint union in (6.22) we can say

= lim
ε→0

lim
t→∞

e(1−δ�)t

2ε

∫
F ε

Q\Z
f (x, n−(x)�−t) dx (6.36)

and using (32) we thus conclude after taking ε → 0 (and therefore � → 0) this is equal

= 1

|mBMS|
∫
T×T

∫ 2| ln θ |

0
f̃ (x, n−(w)�−r)eδ�r dr dμPS(w) dμPS

N+(x) (6.37)

Taking the limit as θ → 0 is then possible as

lim sup
t→∞

|FQ\FQθ |
eδ�t = θc� (6.38)

7 Local Statistics

Theorem 4.3 and Theorem 6.1 can also be used to study the local statistics of FQ when

viewed as a point process on [0, 1] (note once more we are assuming for notation that

�∞ is periodic on [0, 1]).

7.1 Statement

For Q = et/2, let A ⊂ R be bounded interval and set At = A e−t. For a bounded D ⊂ T,

define

PQ(D, A , k) = et vol({x ∈ D : |x + At + Z ∩ FQ| = k})
μPS

N+(D)eδ�t
(7.1)

and

P0,Q(D, A , k) = |{r ∈ FQ ∩ D : |r + At + Z ∩ FQ| = k})
μPS

N+(D)eδ�t
. (7.2)

Theorem 7.1. Given an interval A ⊂ R and D ⊂ T, then for all k > 0

lim
Q→∞ PQ(k,D, A ) = P(k, A ) (7.3)

lim
Q→∞ P0,Q(D, A , k) = P0(k, A ) (7.4)

where P(k, A ) and P0(k, A ) are given explicitly.
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Fig. 3. Above we have shown the gaps in the point set �̂∞. The point set is exactly the one shown

in Figure 1. We have cut off the image at 240 (thus, the 1st three bars do not have the same

height) and the bin size here is 4 × 10−8. Hence, the bars represent the number of gaps lying in a

particular bin.

Remark. In particular, (7.4) implies that the limiting gap distribution exists every-

where.

Remark. Note that the above theorem is restricted to k > 0. The reason for this

is that the scaling in PQ and P0,Q is incorrect for the case k = 0. For geometrically

finite subgroups, the boundary points cluster close together in far apart cluster. This

phenomenon was noticed by Zhang [25] and again in [11].

To give another qualitative example, we have graphed the gap distribution for

�̂∞ in Figure 3.

7.2 Proof

Proof of Theorem 7.1. Theorem 7.1 is a straightforward consequence of Theorem 4.3

and Theorem 6.1. We begin by addressing (7.3), define

C(A ) := {(x, y) ∈ R × (0, 1] : x ∈ A y} ⊂ R2 (7.5)

and note that

p

q
∈ x + At , 0 < q ≤ Q (7.6)
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is equivalent to

⇐⇒ (p, q)n+(x)�t ∈ C(A ). (7.7)

Therefore, for a given x ∈ D,

PQ(D, A , k) = e(1−δ�)t

μPS
N+(D)

vol({x ∈ D :
∣∣Zn+(x)�t ∩ C(A )

∣∣ = k}). (7.8)

Applying Theorem 4.3 then implies

P(k, A ) = 1

|mBMS|m
BR(Sk), (7.9)

where Sk = {α ∈ �\G : |Zα ∩ C(A )| = k}.
Turning now to (7.4). Write

P0(A , k) = lim
t→∞

∣∣{r ∈ FQ ∩ D : |Zn+(r)�t ∩ C(A )| = k}∣∣
eδ�tμPS

N+(D)

= lim
t→∞

∑
r∈FQ

χSk
(r, n+(r)�t)

μPS
N+(D)eδ�t

.

(7.10)

Applying Theorem 6.1 (after extending it to characteristic functions as done in [11]) gives

P0(A , k) = 1

|mBMS|
∫
T×[0,∞)

χ̃Sk
(n−(w)�−r)eδ�r dr dμPS(w). (7.11)

Note that the quantity in (7.9) is finite for k > 0. This was proven in [11,

Proposition 4.3]. This does not hold for k = 0 and is the reason for that restriction in

the theorem. The integral on the right-hand side of (7.11) is finite whenever the Burger–

Roblin measure is finite. Hence, the same [11, Proposition 4.3] implies finiteness of (7.11)

as well. �

8 Explicit Gap Distribution for �̂

We now return to the example, �̂, discussed in Section 1. First, note that Theorem 7.1

implies that, in the limit T → ∞, the gap distribution in (1.13) exists for all s > 0. Our

goal is to prove the following theorem, which gives a far more explicit formula for the

limiting gap distribution:
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Theorem 8.1. For s < s0 = 7.5, and I a closed interval in [0, 1], the limiting gap

distribution can be written

lim
T→∞ F̂T,I(s) =: F̂I(s) = F1,2

I (s) + F2,3
I (s), (8.1)

where F1,2
I (s) and F2,3

I (s) are explicit integrals over compact regions with respect to a

fractal measure (see (8.33)).

The proof follows the methodology of [19]; however, there are significant

differences. The plan is to break up the gap distribution into a sum over pairs of circles

in the initial configuration K0. Then, using the following lemma (of Rudnick and Zhang),

we can express each term in this sum as an integral over a compact area.

Lemma 8.2 ([19, Lemma 3.5]). Let M = a b

c d
∈ SL(2,R).

(i) If c �= 0, then under the Möbius transform M, a circle C(x + yi, y) is

mapped to

C
(

ax + b

cx + d
+ yi

(cx + d)2 ,
y

(cx + d)2

)
(8.2)

if cx +d �= 0, and to the line �z = 1/2c2y if cx +d = 0. When c = 0, the image

circle is

C
(

ax + b

d
,

y

d2

)
. (8.3)

(ii) If c �= 0, then the line C = R + yi is mapped to

C
(

a

c
+ 1

2c2y
i,

1

2c2y

)
, (8.4)

and to the line R + a2yi if c = 0.

8.1 Breaking the gap distribution up

In [19], a fundamental observation is that at a given level T, the two circles correspond-

ing to neighboring tangencies can be mapped by exactly one or two group elements to a

pair in the initial configuration. That is not true here; however, the following proposition

states that this is the case in the interval [0, s0).
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28 C. Lutsko

Fig. 4. The labeling used in this section. For clarity, we only show a portion of the interval and a

few circles in K. The red section is what we call the rectangle (C(1)
1 , C(1)

2 , C(0), C0).

Proposition 8.3. For any T and I, suppose C and C′ are the circles tangent to C0 at xj
T,I

and xj+1
T,I . If T(xj+1

T,I − xj
T,I) ≤ s for s < s0 then there exists a γ ∈ � such that C = γ Cl and

C′ = γ Cm for Cl �= Cm ∈ K0 and neither equal C0. Moreover, if C and C′ are not tangent

then γ is unique and if they are tangent then there exist exactly two such γ .

Remark. The reason we consider s < s0 in Theorem 8.1 is that Proposition 8.3 fails

for larger s. In words, for larger s some of the gaps considered are not the image of a

pair in the initial configuration. To get around this, one could consider a larger initial

configuration (i.e., consider K together with the circles tangent at 1/4 and 4 − 1/4).

This would allow Proposition 8.3 to hold for slightly larger s0. Therefore, as one

considered larger and larger gaps, one would need to consider larger and larger initial

configurations and more and more terms in the decomposition below. In this paper, we

will stick to the case s0 = 7.5 as it will simplify the following proofs.

For ease of notation, we restrict our attention to circles tangent to C0 in

[0, 2] (i.e., beneath C2) and adopt the following notation shown in Figure 4: first label

C2 = C0 and

• The tangencies are labeled by their continued fraction expansions α
(i)
k1,...,ki

=
[0; 4k1, . . . 4ki].

• The associated circles are labeled C(i)
k1,...,ki

.

• The diameter of each circle is similarly labeled h(i)
k1,...,ki

.

Thus, each circle C(i)
k1,...,ki

is the child of the circle C(i−1)

k1,...,ki−1
(to which it is tangent) and the

parent of Z �=0 children - C(i+1)

k1,...,ki,ki+1
(to which it is also tangent).
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Define a rectangle to be any collection of circles

R = (C(i)
k1,...,ki−1,ki

, C(i)
k1,...,ki−1,ki±1, C(i−1)

k1,...,ki−1
, C0) , (ki �= 0), (8.5)

where ki ± 1 �= 0 (see for example the rectangle in Figure 4). A rectangle is thus a pair

of neighbors in a generation, the shared parent and the real line. Let R0 denote the

rectangle (C0, C1, C2, C3) of the initial configuration. The following simple observation is

the basis of the proof of Proposition 8.3.

Fact 8.1. For any rectangle R, there exists a unique γ ∈ �̂

R = γR0. (8.6)

The configuration K = �K0 where K0 is the initial configuration. Since circle inversions

send circles to circles preserving tangencies, there must be a γ ∈ �̂ sending R0 to R.

Moreover, the uniqueness follows as we are working in PSL(2,Z).

Proof of Proposition 8.3. In this proof, given two circles with tangencies α1 and α2

and diameters h1 and h2, we refer to
∣∣α1 − α2

∣∣ as the gap associated to them and to

min{h1, h2}−1
∣∣α1 − α2

∣∣ as the scaled gap associated to them. Note that if a scaled gap is

larger than s0, then the gap will never contribute to F̂T,I(s) for any T. Thus, that gap can

be ignored. Fact 8.1 implies that Proposition 8.3 follows if we show that all scaled gaps

associated to pairs of circles not in rectangles are larger than s0.

Step 1: the scaled gap associated to a pair of non-tangent circles in a rectangle has

the form

min{h(i)
k1,...,ki

, h(i)
k1,...,ki±1}−1

∣∣∣α(i)
k1,...,ki

− α
(i)
k1,...,ki±1

∣∣∣ (8.7)

(again we assume ki ± 1 �= 0).

Step 2: we now use some theory of continued fractions to show that (8.7) is bounded

above 4. Therefore, the gap arising from non-tangent pairs in a rectangle is

bounded above 4. Given a tangency α
(i)
k1,...,ki

= [0; a1, . . . ai], let

bn

dn
:= [0; a1, . . . , an] (8.8)
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for n < i where bn and dn share no common factors. It is a classical exercise

to show (see [9]):

bn = anbn−1 + bn−2, b−2 = 0, b−1 = 1 (8.9)

dn = andn−1 + dn−2, d−2 = 1, d−1 = 0 (8.10)

and

dnbn−1 − dn−1bn = (−1)n. (8.11)

Hence, we can write the following:

min{h(i)
k1,...,ki

, h(i)
k1,...,ki±1}−1

∣∣∣α(i)
k1,...,ki

− α
(i)
k1,...,ki±1

∣∣∣
= max{d′

i, di}2
∣∣[1; a1, . . . ai] − [1; a1, . . . ai ± 4]

∣∣
= max{d′

i, di}2
∣∣∣∣ aibi−1 + bi−2

aidi−1 + di−2
− (ai ± 4)bi−1 + bi−2

(ai ± 4)di−1 + di−2

∣∣∣∣
= max{d′

i, di}2 4

did
′
i

≥ 4,

(8.12)

where bi and di are, respectively, the numerator and denominator of α
(i)
k1,...,ki

and b′
i and

d′
i are the numerator and denominator of α

(i)
k1,...,ki±1 (and similarly for all dj and bj).

Step 3: suppose C(i)
m1,...,mi

= D1 and C(j)
n1,...,nj

= D2 are adjacent at time T and do not

both belong to a rectangle. For notation, we assume α
(i)
m1,...mi

< α
(j)
n1,...nj

.

• By construction, there is a shared ancestor of D1 and D2, C(k)
m1,...,mk

=
B1 (for k < min{i, j}). That is mx = nx for all 1 ≤ x ≤ k

• At the k+1-st generation, D1 is the descendent of Cm1,...,mk+1
= B3 and

D2 is the descendent of C(k+1)
n1,...,nk+1

= B2 (see Figure 5) and (B1,B2,B3, C0)

must form a rectangle (otherwise, D1 and D2 are clearly not adjacent

at any times).

• Lastly, it is evident that D1 must be the right-most descendent of B3

of its generation. Thus,
∣∣ml

∣∣ = 1 for all l > k + 1. Moreover, D2 must

be the left-most descendent of B2 in its generation.

Motivated by these three geometric facts, we adopt the following notation

(see Figure 5). In each generation l, we label the left-most descendent of B2

by B2(l−k). Moreover, we label the right-most descendent of B3 by B2(l−k)+1.

With that notation, all non-tangent adjacent pairs of circles at a given time

are of the form Bx, Bx+1 for some x.
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Fig. 5. Above we show the relevant rectangle, circles, and labeling for Step 3. We are only

concerned with the ’‘innermost circles” in the rectangle. The circles are labeled in decreasing

order of size.

Label the tangency associated to Bi, αi. Label the diameter of Bi, hi. We as-

sume (w.l.o.g) h1 >h2 >h3. Label the gap between Bi and Bi+1, gi =|αi − αi+1|.
With this notation, all gaps associated to adjacent (non-tangent) pairs at

time T are of the form gi for i ≥ 2. We show that h−1
i+1gi (the scaled gap)

is larger than 7.5 for all i > 2. This will prove the proposition as all gaps

associated to non-tangent pairs are of this form.

First, assume h3 = 1 (this is w.l.o.g by a simple scaling argument). Now we

collect three facts:

• By (8.10) h2 ≤ 4h3 = 4

• By (8.10) hn+2 ≤ hn
32

• By (8.9)–(8.11) gi+1 ≥ gi − h
1
2
i+2

Collecting these facts together lead to the following sequence of inequalities:

h−1
3 g2 ≥ 4

h−1
4 g3 ≥

(
4 − 2

3

)(
3

2

)2

h−1
5 g4 ≥

(
4 − 2

3
− 1

3

)
32 (8.13)

h−1
6 g5 ≥

(
4 − 2

3
− 1

3
− 2

9

)(
9

2

)2

h−1
7 g6 ≥

(
4 − 2

3
− 1

3
− 2

9
− 1

9

)
92

...
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hence, the gap arising from circles, which do not form the boundary of a

rectangle, is at least 71
2 .

This proves the proposition with s0 = 71
2 (this may not be sharp). �

Now that we have established this proposition, the argument to prove

Theorem 8.1 follows similar lines to Rudnick and Zhang. Note that Proposition 8.3

implies we can write the gap distribution for s < s0 as

F̂T,I(s) = F1,2
T,I(s) + F2,3

T,I(s) (8.14)

Fi,j
T,I(s) :=

#
{

(xl
T,I , xl+1

T,I) ∈ �(αi, αj)

∣∣∣T(xl+1
T,I − xl

T,I) ≤ s
}

Tδ�̂
, (8.15)

where αi are the tangencies associated to Ci in the initial configuration (the contribution

from the tangent pair (1, 3) has already been counted from the (1, 2) pair because of the

overcounting in Proposition 8.3 for gaps associated with tangent pairs).

8.2 Geometric description of the gap distribution

The Lemma 8.2 and the Proposition 8.4 play a crucial role in what follows. As these

theorems are taken from [19] and are not specific to the subgroup considered, we will

not repeat the details here.

We use Lemma 8.2 to provide conditions under which the image of Ci and Cj

are adjacent at time T. Indeed, it follows from [19, Proposition 4.6] that there exist two

regions 

1,2
T and 


2,3
T such that, for M = a b

c d
, the image M(αi, αj) is an adjacent pair at

time T if and only if (c, d) ∈ 

i,j
T (where (i, j) = (1, 2) or (2, 3)).

We define these two regions as subsets of the cd-plane {(c, d)|c ≥ 0}:
(a) We define 


1,2
T to be those {(c, d)|c ≥ 0} such that

c2 ≤ T

2
, d2 ≤ T

2
(8.16)

(4c + |d|)2 >
T

2
. (8.17)
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(b) We define 

2,3
T to be those {(c, d)|c ≥ 0} such that

d2 ≤ T

2
, (4c + d)2 ≤ T

2
. (8.18)

Ifd(4c + d) < 0 thenc2 >
T

2
. (8.19)

Note that 

i,j
T is in both cases a union of convex sets and



i,j
T = √

T

i,j
1 . (8.20)

Hence, we have the following restatement of [19, Proposition 4.6] restricted to

our context.

Proposition 8.4 ([19, Proposition 4.6]). For γ = (
aγ bγ
cγ dγ

) ∈ �,

(a) the circles γ (C1) and γ (C2) are neighbors in AT if and only if (cγ , dγ ) ∈√
T


1,2
1 .

(b) the circles γ (C2) and γ (C3) are neighbors in AT if and only if (cγ , dγ ) ∈√
T


2,3
1 .

The relative gap condition in (8.15) can now be written (again following

[19, (18)–(20)]):

(a) For i = 1 and j = 2,

c |d| ≥ T

s
. (8.21)

(b) For i = 2 and j = 3,

|d(4c + d)| ≥ 4T

s
. (8.22)

Thus, we come to the same conclusion as Rudnick and Zhang that

Fi,j
T,I(s) = 1

Tδ�̂
#

{
γ =

(
aγ bγ

cγ dγ

)
∈ � | γαi, γαj ∈ I, (cγ , dγ ) ∈ 


i,j
T (s)

}
(8.23)

for (i, j) = (1, 2), (2, 3), where 

i,j
T (s) is defined to be those elements (c, d) ∈ 


i,j
T satisfying

(8.21) for (1, 2) and (8.22) for (2, 3).
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Note that 

i,j
T (s) are unions of convex, compact sets, and



i,j
T (s) = √

T

i,j
1 (s). (8.24)

8.3 Limiting behaviour

To ease notation and remain consistent with [19], we reparameterize the geodesic

flow

A :=
{

y− 1
2 0

0 y
1
2

|y > 0

}
(8.25)

and set

AT :=
{

y− 1
2 0

0 y
1
2

|0 < y < T

}
. (8.26)

Note that this is the backwards geodesic flow compared with how we defined it in

Section 2. Hence, we have the corresponding Iwasawa decomposition PSL(2,R) = N−AK

(note that N− is an expanding horosphere for this flow). In which case, we have

the following theorem concerning counting points in the orbits of general discrete

subgroups, � (as in the rest of the paper), in bisectors due to Bourgain, Kontorovich,

and Sarnak.

Theorem 8.5 ([5]). Consider bounded Borel subsets 
1 ⊂ N− and 
2 ⊂ K such that

μPS(∂(
1(Xi)) = νi(∂(
−1(X−
i ))) = 0, then

lim
T→∞

#(� ∩ 
1AT
2)

Tδ�
= 1

δ� · ∣∣mBMS
∣∣μPS(
1(Xi))νi(


−1
2 (X−

i )). (8.27)

This counting theorem then allows us to prove the following:

Proposition 8.6. Let I be an interval, and let 
 ⊂ {(c, d) | c ≥ 0} be a bounded,

convex, compact subset with piecewise smooth boundary. Moreover, suppose that in

polar coordinates the region 
 is bounded by two piecewise smooth curves r1(θ) ≤ r2(θ)
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for θ ∈ [θ1, θ2]. Then

#

{
γ =

(
∗ ∗
cγ dγ

)
∈ �∞\�

∣∣∣∣∣ x(γ ) ∈ I, (cγ , dγ ) ∈ √
T


}

∼ Tδ�

δ�

∣∣mBMS
∣∣μPS(I(Xi))

∫ θ2

θ1

(
r2δ�

2 (θ) − r2δ�

1 (θ)
)

dνi(θ) (8.28)

as T → ∞, where dνi(θ) = dνi(k(θ)Xi) and we have written γ in N−AK coordinates as

x(γ )a(γ )k(γ ).

Proof. The proof follows the same lines as [19, Proposition 5.3]. First, we note that

using the Iwasawa decomposition of γ , we have dγ = y1/2 cos θ , cγ = y1/2 sin θ .

Therefore, (y1/2, θ) give a polar coordinate decomposition of the plane. The rest of the

argument follows from a Riemann sum approximation, which works equally well when

working with νi.

Split the interval I = [θ1, θ2] into separate equally spaced intervals {Ii}n
i=1. Take

θ+
1,i, and θ−

1,i to be the points in Ii where r1 is maximized (resp. minimized) and θ+
2,i, and

θ−
2,i to be the points at which r2 is maximized (resp. minimized). Now define


−
n =

n⋃
i=1

Ii × [r1(θ−
1,i), r2(θ+

2,i)]


+
n =

n⋃
i=1

Ii × [r1(θ+
1,i), r2(θ−

2,i)].

(8.29)

Thus, 
−
n ⊆ 
 ⊆ 
+

n and

lim
n→∞

n∑
i=1

∫
Ii

(
r2δ�

2 (θ+
2,i) − r2δ�

1 (θ−
1,i)
)

dνi(θ)

= lim
n→∞

n∑
i=1

∫
Ii

(
r2δ�

2 (θ−
2,i) − r2δ�

1 (θ+
1,i)
)

dνi(θ)

=
∫ θ2

θ1

(
r2δ�

2 (θ) − r2δ�

1 (θ)
)

dνi(θ). (8.30)

For the truncated regions 
+
n and 
−

n , the proposition follows readily with the obser-

vation that in (8.27), the fact that the conformal density is evaluated at 
−1
2 simply

means that the bounds of integration would be [−θ2, −θ1]. However, since our group
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is symmetric, this is equal the integral over [θ1, θ2]. From, since (28) satisfies finite

additivity, the proposition follows. �

Summarizing: provided s ≤ s0 = 71
2 the gap distribution at time T can be written

F̂T,I(s) = F1,2
T,I(s) + F2,3

T,I(s). (8.31)

Moreover, we can take the limit as T → ∞ and (8.15) becomes

F̂I(s) = F1,2
I (s) + F2,3

I (s), (8.32)

where, for (i, j) = (1, 2), (2, 3),

Fi,j
I (s) = 1

δ�̂|mBMS|μ
PS(I(Xi))

∫ θ
i,j
2 (s)

θ
i,j
1 (s)

(
ri,j

2 (θ , s)2δ�̂ − ri,j
1 (θ , s)2δ�̂

)
dνi(θ), (8.33)

where ri,j
2 (θ , s)

∣∣∣
θ∈[θ i,j

1 (s),θ i,j
2 (s)]

and ri,j
1 (θ , s)

∣∣∣
θ∈[θ i,j

1 (s),θ i,j
2 (s)]

are the curves in polar coordinates

forming the boundary of 
i,j(s).

For convenience, define the constant

κ := 1

δ�̂|mBMS|μ
PS(I(Xi)). (8.34)

8.4 Properties of the limiting gap distribution

Looking first at 

1,2
1 defined by (8.16), (8.17), and (8.21), however since s < s0 = 71

2 , (8.17)

can be ignored. Hence, we have the region (in (c, d)-coordinates):



1,2
1 (s) = [0,

1√
2

] × [− 1√
2

,
1√
2

] ∩
{
(c, d) : c ≥ 1

s|d|
}

. (8.35)

This region is symmetric under reflection across the y-axis and since the conformal

density in (8.33) is invariant under this reflection we can consider


̃
1,2
1 (s) = [0,

1√
2

] × [0,
1√
2

] ∩
{
(c, d) : c ≥ 1

s|d|
}

(8.36)

instead, and the only difference will be a factor of 2.
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Regarding 

2,3
1 (s), from (8.18), we know that 


2,3
1 is a subset of the triangle

− 1√
2

≤ d ≤ 1√
2

, 0 ≤ c <
1

4
√

2
− d. (8.37)

Moreover, (8.19) implies that when d < 0, if c > −d
4 then c > 1√

2
, thus 


2,3
1 = T1 ∪ T2

where

T1 :=
{
(c, d) : c, d ≥ 0 , c <

1

4
√

2
− d

}
(8.38)

T2 :=
{
(c, d) : c ≥ 0 , − 1√

2
≤ d ≤ 0 , c ≤ −d

4

}
. (8.39)

Now looking at the condition imposed by (8.22), it is straightforward to see that, for

s < 8, 

2,3
1 (s) does not intersect T2. Hence, for s < s0 < 8,



2,3
1 (s) =

{
(c, d) ∈ T1 : c ≤ 1

sd
− d

4

}
. (8.40)

So far we have established that

F̂(s) = κμ(

2,3
1 (s)) + 2κμ(
̃

1,2
1 (s)), (8.41)

where, for a general set A = {
(r cos θ , r sin θ) : r ∈ [rA

1 (θ), rA
2 (θ)], θ ∈ [θA

1 , θA
2 ]
}
,

μ(A) :=
∫ θA

2

θA
1

(
rA

2 (θ)2δ�̂ − rA
1 (θ)2δ�̂

)
dνi(θ). (8.42)

Thus, F̂(s) is explicitly calculated in terms of the fractal measure νi. Unfortu-

nately, this measure is not itself explicit (in that it is defined as the weak limit of a

sequence of measures). However, it does lend itself to simulations (which we will not do

here) and one can calculate certain analytic properties of F̂, we present three below:

Proposition 8.7. F̂I(s) = 0 for all s < 2 for any I. Moreover, all gaps are larger than 2.

This is a form of level repulsion and follows from the definitions of 
̃
1,2
1 (s) and



2,3
1 (s) and (8.41). Indeed, 
̃

1,2
1 (s) is empty for s < 2 and 


2,3
1 (s) is empty for s < 4.

νi is a fractal measure supported on the limit set. Hence, looking at (8.42), if

neither θA
1 nor θA

2 is in L(�) (the support of νi). Then the derivative of F̂ will be easy to

calculate:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab036/6226703 by guest on 30 July 2021



38 C. Lutsko

Proposition 8.8. Suppose S ⊂ (2, s0) is a connected subset such that for all s ∈ S, θ
i,j
1 (s)

and θ
i,j
2 (s) �∈ L(�) for (i, j) = (1, 2) or (2, 3), then

P(s) = F̂ ′(s) = CS
sδ�̂+1 , (8.43)

where 0 ≤ CS < ∞ depends on the region S but not on s ∈ S and is explicit.

Proof. Let s1 = inf {s ∈ S}, in which case, for s ∈ S, we separate the integral in (8.41)

and write

F̂(s) = κ

∫ θ
2,3
2 (s)

θ
2,3
1 (s)

(
r2,3

2 (θ , s)2δ�̂−r2,3
2 (θ , s)2δ�̂

)
dνi(θ)+2κ

∫ θ
1,2
2 (s)

θ
1,2
1 (s)

(
r1,2

2 (θ , s)2δ�̂−r1,2
2 (θ , s)2δ�̂

)
dνi(θ)

= κ

∫ θ
2,3
2 (s1)

θ
2,3
1 (s1)

(
r2,3

2 (θ)2δ�̂ −r2,3
2 (θ , s)2δ�̂

)
dνi(θ)+2κ

∫ θ
1,2
2 (s1)

θ
1,2
1 (s1)

(
r1,2

2 (θ)2δ�̂ −r1,2
2 (θ , s)2δ�̂

)
dνi(θ)

+R(s,S),

where we have noted that (by (8.36) and (8.40)) r2 is independent of s. In fact, since on

S, θ
i,j
1 (s) and θ

i,j
2 (s) are outside L(�), R(s,S) is 0 (as the measure is supported away from

the range of integration). Hence, taking a derivative:

P(s) = −κ

∫ θ
2,3
2 (s1)

θ
2,3
1 (s1)

dr2,3
1 (θ , s)2δ

ds
dνi(θ) − 2κ

∫ θ
1,2
2 (s1)

θ
1,2
1 (s1)

dr1,2
1 (θ , s)2δ

ds
dνi(θ). (8.44)

Moreover, for s < s0, we have that

r1,2
1 (θ , s) = 1√

s

√
1

cos θ sin θ
, r2,3

1 (θ , s) = 1√
s

√√√√ 1(
sin θ cos θ + cos2 θ

4

) . (8.45)

Therefore, for s ∈ S,

P(s) = κ

sδ�̂+1

⎛⎜⎝∫ θ
2,3
2 (s1)

θ
2,3
1 (s1)

⎛⎝ 1(
sin θ cos θ+ cos2 θ

4

)
⎞⎠δ�̂

dνi(θ)+2
∫ θ

1,2
2 (s1)

θ
1,2
1 (s1)

(
1

cos θ sin θ

)δ�̂

dνi(θ)

⎞⎟⎠ .

(8.46)
�

The final analytic property we calculate for F̂ is the following Lipschitz

condition:
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Proposition 8.9. F̂ is Lipschitz in a neighborhood of s whenever s ∈ [0, 4)

∣∣̂F(s) − F̂(s + x)
∣∣ ≤ Csx (8.47)

for some constant Cs < ∞.

Proof. F̂ is 0 on [0, 2). Moreover, Proposition 8.8 implies the F̂ is differentiable when

both θ
1,2
1 and θ

1,2
2 are outside L(�̂). Hence, we only need to worry about when θ

1,2
1 (s) or

θ
1,2
2 (s) is a parabolic fixed point (since parabolic points are dense in the limit set).

For any 2 ≤ s < 4 such that θ
1,2
1 (s) or θ

1,2
2 (s) is a parabolic fixed point:

∣∣̂F(s) − F̂(s + x)
∣∣ ≤ C

∣∣∣∣∣
∫ θ

1,2
2 (s+x)

θ
1,2
2 (s)

(
r1,2

2 (θ)2δ�̂ − r1,2
1 (θ , s)2δ�̂

)
dνi(θ)

+
∫ θ

1,2
1 (s)

θ
1,2
1 (s+x)

(
r1,2

2 (θ)2δ�̂ − r1,2
1 (θ , s)2δ�̂

)
dνi(θ)

∣∣∣∣∣ . (8.48)

Plugging in the formula for r1,2
2 and r1,2

1 and using Corollary 3.3 give that the 1st term

on the right-hand side of (48) is less than

≤ Cs

∣∣∣∣∣∣
∫ θ

1,2
2 (s+x)

θ
1,2
2 (s)

θ2δ�̂−2

⎛⎝(1/
√

2

sin θ

)2δ�̂

−
(

1

(s + x) cos θ sin θ

)δ�̂

⎞⎠ dθ

∣∣∣∣∣∣ (8.49)

in the range with which we are concerned we can bound this integral (by adjusting the

constant) by

≤ Cs

∫ θ
1,2
2 (s+x)

θ
1,2
2 (s)

θ2δ�̂−2 dθ . (8.50)

Evaluating the integral and performing the same analysis on the other term in (48) give

∣∣̂F(s) − F̂(s + x)
∣∣ ≤ Cs

(
θ

1,2
2 (s + x)2δ�̂−1 − θ

1,2
2 (s)2δ�̂−1

)
+ Cs

(
θ

1,2
1 (s)2δ�̂−1 − θ

1,2
1 (s + x)2δ�̂−1

)
.

(8.51)

Inserting the definition of θ
1,2
2 and θ

1,2
1 then gives

∣∣̂F(s)−F̂(s +x)
∣∣≤Cs

(
tan−1(s+x)2δ�̂−1−tan−1(s)2δ�̂−1

)
+Cs

(
cot−1(s)2δ�̂−1−cot−1(s+x)2δ�̂−1

)
.

(8.52)
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40 C. Lutsko

From here, Taylor expanding gives

∣∣̂F(s) − F̂(s + x)
∣∣ ≤ C

∣∣∣∣(π

4
+ x

4

)2δ�̂−1 −
(π

4

)2δ�̂−1
∣∣∣∣+ C

∣∣∣∣(π

4

)2δ�̂−1 −
(π

4
− x

4

)2δ�̂−1
∣∣∣∣ . (8.53)

Here, expanding again gives us that F̂ is Lipschitz. �

9 Gauss-Like Measure

As in the previous section, this section is restricted to the example �̂. The goal for this

section is to derive and study the measure

m0(E) = C0

∫
E

∫ 2

−2

dμPS(x)

|xy − 1| 2δ�̂
dμPS(y), (9.1)

where E is a Borel set in L(�̂)∩(−2, 2) and C0 is a normalizing constant. In particular, we

show that this measure is invariant and ergodic for the Gauss map. Then, as a corollary

of this ergodicity, we are able to show that the Gauss–Kuzmin statistics on Q4 converge

to an explicit function. It should be noted that the density in (9.1) is a normalized

eigenfunction for the transfer operator associated to the Gauss map. We shall avoid

this zeta functions approach here; however, it is a promising avenue for later research.

9.1 Setup

Series [20], for the modular group, shows that one can encode the endpoints of geodesics

by a ‘’cutting sequence”, which generates the continued fraction expansions of the

endpoints. Moreover, she identifies a cross-section of the unit tangent bundle such that

the return map to this cross-section corresponds to the (classical) Gauss map on the

end point. As an application of this, she shows that the Gauss measure is simply a

projection of the Haar measure onto these end points. Thus, because the Haar measure

is ergodic for the geodesic flow, the Gauss measure is ergodic for the Gauss map. The

goal for this subsection is to construct the analogous measure in our context (for �̂). To

do this, we will project the BMS measure in the same way and show that the resulting

measure is ergodic for the Gauss map (for �̂). In the end, we will only be working with

this measure, however for those interested in the Appendix, we show how to construct

the analogous cutting sequences and cross-section in our context (we omit the formal

proofs concerning the commuting diagrams as we do not use them and the details are

the same as [20]).
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Throughout this section, let (−2, 2)∗ = (−2, 2) \ {0}. Consider the restriction of

Gauss map to the limit set, L(�̂) = Q4 (where Q4 denotes the closure):

T :L(�̂) → L(�̂)

[0; a1, a2, . . . ] �→ [0; a2, . . . ]
(9.2)

and its inverse

T−1([0; a1, . . . , an−1]) =
⋃

k∈4Z∗
[0; k, a1, . . . , an−1]. (9.3)

The σ -algebra associated to this Gauss map is now the Borel σ -algebra on R intersected

with L(�̂). The goal is now to take the Bowen–Margulis–Sullivan measure and project it

to obtain a measure on (−2, 2). We choose the BMS measure as it is invariant and ergodic

under the geodesic flow. Thus, after projecting, we are left with a measure invariant and

ergodic under the Gauss map. The following lemma gives the parameterization; this was

used in Sullivan’s work [21]; however, we include the proof for completeness.

Lemma 9.1. For u ∈ T1(H), let z denote the Euclidean midpoint of the geodesic

containing u and t := βu−(z, u) (thus, t is the arclength from z to u). Then

dmBMS(u) = 1∣∣u+ − u−∣∣ 2δ�
dμPS(u−)dμPS(u+)dt. (9.4)

Remark. Note this lemma is not specific to the subgroup �̂ and holds for any Bowen–

Margulis–Sullivan measure associated to a subgroup considered in this paper.

Proof. First (recalling s from the definition of mBMS (2.6)) note

s := βu−(i, u)

= βu−(i, z) + βu−(z, u)

= βu−(i, z) + t

= βu−(i, i + u−) + βu−(i + u−, z) + t. (9.5)

Now using the definition of the Busemann function, we note that βu−(i + u−, z) is the

hyperbolic distance (along the vertical geodesic at u−) between the horoball of height 1
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42 C. Lutsko

based at u− and the horoball of height
∣∣u+ − u−∣∣. Thus,

s = t + βu−(i, i + u−) + ln
∣∣u+ − u−∣∣ . (9.6)

Similarly,

βu+(i, u) = −t + βu+(i, i + u+) + ln
∣∣u+ − u−∣∣ . (9.7)

Therefore, writing out the definition of the Burger Roblin measure and inserting (9.6)

and (9.7):

mBMS(u) := eδ�seδ�βu+ (i,u)dνi(u
−)dνi(u

+)ds

= 1∣∣u+ − u−∣∣ 2δ�
(eδ�βu− (i,i+u−)dνi(u

−))(eδ�βu+ (i,i+u+))dνi(u
+))dt

= 1∣∣u+ − u−∣∣ 2δ�
dμPS(u−)dμPS(u+)dt

(9.8)

where in the last line we insert the definition of μPS. �

To derive the Gauss-type measure (similarly to [20] for the classical Gauss

measure), we restrict the BMS measure to the u− coordinate. Integrating over the u+

coordinate in (−2, 2) gives

∫ 2

−2

dμPS(u+)∣∣u+ − u−∣∣ 2δ�̂
. (9.9)

Thus, for a set E ⊂ (−∞, −2) ∪ (∞, 2),

∫
E

∫ 2

−2

dμPS(x)

|x − y| 2δ�̂
dμPS(y) (9.10)

is a measure. Changing coordinates and using that dμPS(1/y) = y−2δ�̂ dμPS(y) (this

follows from (2.4) and a calculation using the Busemann function) gives, for any set,

E ⊂ (−2, 2)∗

m0(E) := C0

∫
E

∫ 2

−2

dμPS(x)

|xy − 1| 2δ�̂
dμPS(y), (9.11)

where C0 is a normalizing constant. In the next section, we show that this is indeed

T-invariant and ergodic.
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9.2 Invariance and ergodicity

Theorem 9.2. On (−2, 2)∗, m0 is T-invariant and ergodic.

Proof. To prove invariance, let E ⊂ (−2, 2)∗ and consider the measure of its preimage

m0(T−1(E)) = C0

∫
T−1(E)

∫ 2

−2

dμPS(x)

|xy − 1| 2δ�̂
dμPS(y).

Plugging in the definition of T−1(E) and changing variables (dμPS(1/y) = y−2δ�̂ dμPS(y))

together with the fact that the Patterson–Sullivan measure is invariant under transla-

tion by 4n gives

= C0

∑
n∈Z∗

∫
E+4n

(∫ 2

−2

dμPS(x)

|y − x| 2δ�̂

)
dμPS(y)

= C0

∫
E

∑
n∈Z∗

∫ 2

−2

(
dμPS(x)

|y − x − 4n| 2δ�̂

)
dμPS(y). (9.12)

If we now change the x variable to x + 4n, this gives

= C0

∫
E

∫
(−∞,−2)∪(2,∞)

dμPS(x)

|y − x| 2δ�̂
dμPS(y).

Hence, applying the change of variables x �→ x−1 gives

= C0

∫
E

∫ 2

−2

dμPS(x)

|xy − 1| 2δ�̂
dμPS(y) = m0(E).

This new measure is ergodic for the Gauss map because the BMS is ergodic for

the geodesic flow. However, to see this directly, note first that the density

ρ(y) =
∫ 2

−2

dμPS(x)

|xy − 1| 2δ�̂

is bounded on L(�̂). Given a1, . . . , an and writing pi
qi

= [0; a1, . . . , ai], define the

cylinder sets

�n :=
{
ψn(t) := pn + pn−1t

qn + qn−1t
: 0 ≤ t ≤ 1

}
. (9.13)

Note that the sets �n ∩ L(�̂) generate the Borel σ -algebra on L(�̂).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab036/6226703 by guest on 30 July 2021



44 C. Lutsko

Now, for any n > 0, for s < t ∈ [0, 1], we have that there exists a γ ∈ �̂ such that

μPS
(

T−n([
s

4
,

t

4
))

∣∣∣∣�n

)
� νi

(
T−n([

s

4
,

t

4
))

∣∣∣∣�n

)

= νi(γ [ s
4 , t

4 ))

νi(γ [0, 1
4 ))

= νi([
s
4 , t

4 ))

νi([0, 1
4 ))

.

(9.14)

Therefore, as the above-mentioned density is bounded above and below, for any A ⊂
L(�̂) ∩ (−2, 2)∗ measurable

1

C
m0(A) ≤ m0(T−n(A)

∣∣�n) ≤ Cm0(A). (9.15)

To conclude, assume A is T-invariant, then 1
C m0(A) ≤ m0(A| �n). If m0(A) >

0, then 1
C m0(�n) ≤ m0(�n|A). Therefore, since the cylinders �n generate the Borel σ -

algebra of measurable sets, we have that

1

C
m0(B) ≤ m0(B|A)

for all B measurable. Setting B = Ac implies that m0(Ac) = 0 and m0(A) = 1. Hence, m0

is ergodic. �

9.3 Gauss–Kuzmin statistics

Given a point x = [0; a1, a2, . . . ] ∈ R (ai ∈ N), Gauss considered the following problem

(further studied by Kuzmin in 1928): let P̃n,k(x) = #(k,n)
n where #(k, n) is the number of

ai = k with i ≤ n. Does there exist a limting distribution for P̃n,k(x)? Using the ergodicity

of the Gauss measure, it is fairly simple to show that for Lebesgue-almost every x

lim
n→∞ P̃n,k(x) = 1

ln(2)
ln
(

1 + 1

k(k + 2)

)
. (9.16)

This distribution is now known as Gauss–Kuzmin statistics. For a detailed description

of the original problem and history, see [9, Section 15]. The problem has an analogue in

our setting.

For [0; a1, a2, ...] = x ∈ Q4 ∩ (−2, 2), define P̂n,k(x) = #(k,n)
n where #(k, n) is the

number of ai equal k for i ≤ n. For simplicity of notation, we assume k > 0. In that case,
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writing

P̂n,k(x) = 1

n

n−1∑
s=0

χ
( 1

k+4 , 1
k ](T

sx) (9.17)

and applying the Birkhoff ergodic theorem for m0 imply the following:

Theorem 9.3. For every positive integer k and μPS-almost every x = [0; a1, . . . ] ∈ Q4 ∩
(−2, 2)

P̂k(x) = lim
n→∞ P̂n,k(x) = m0

(
(

1

k + 4
,

1

k
]
)

. (9.18)

Appendix - Cutting Sequences for �̂

Working with �̂ the goal of this section is to show that, given a geodesic with right

end point in (−2, 2) ∩ L(�̂) (and left end point in (−∞, −2)), there is a correspondence

between the way this geodesic cuts the boundaries of fundamental domains and the

continued fraction expansion of the end point. This section is exactly analogous to the

Bowen–Series coding for geodesics in PSL(2,R)/ PSL(2,Z).

Let ξ ∈ (−2, 2) ∩ L(�̂) and let γ be any geodesic whose right endpoint is ξ and

which intersects the line x = −2. As this geodesic moves from left to right, it will cut

each fundamental domain. Each fundamental domain has two funnels and a cusp. Thus,

the geodesic will separate one of the three from the others. If the geodesic separates a

cusp, we write a c. If it separates a funnel, we write an l or an r depending on whether

the funnel is to the left or right of the geodesic. See Figure 6.

It is easy to see that the 1st term in the sequence will always be r and the next

term will be l/r after that there will be a sequence of cs followed by the same l/r. Thus,

we end up with a sequence of the form

ξ �→ r, q0, cα0 , q0, q1, cα1 , q1, q2, cα2 , q2 . . . (A.1)

(the sequence is finite if the geodesic ends in a cusp) where qi = l, r and αi ≥ 0. With

that, it is fairly easy to see that

ξ = [0; (−1)η04(α0 + 1), (−1)η14(α1 + 1), . . . ] (A.2)
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Fig. 6. In this diagram, we show the cutting sequence for three different points ξ1, ξ2, ξ3. For ξ2,

first a funnel is cut off to the right of the geodesic, then again a funnel is cut off to the right.

Then a cusp is cut off and then another cusp. Thus, the 1st four terms in the cutting sequence are

r, r, c, c.

Fig. 7. In this diagram, we show a geodesic in the fundamental domain above i, and a point

x ∈ S ∩ γ such that the cutting sequence for γ changes type at x. This is because the cutting

sequence (pictured in red) with x inserted will read ..., r, r, x, l, ....

where

ηi =
⎧⎨⎩0 ifqi = l

1 if qi = r
. (A.3)

With that, there is a correspondence between such sequences and geodesics with end

points in (−2, 2).

In order to identify the appropriate cross-section of T1(�\H), consider the

fundamental domain above i and the line connecting i to ∞, call it S. Given a geodesic γ

whose left end point is in (−∞, −2)∩L(�̂)) and whose right endpoint is in (−2, 2)∩L(�̂))
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consider a point x ∈ γ ∩ S. We insert x into the cutting sequence of γ , at its position in

the sequence of fundamental domains, resulting in a sequence of the form:

r, q0, cα0 , q0, q1, c, c, c, x, c, q1, ... (A.4)

We say a cutting sequence changes type at x if x lies between a qi and qi+1.

With that, the cross-section C ⊂ T1(�\H) are those points, based at x ∈ S pointed

along geodesics whose cutting sequence changes type at x. In that case, the return map

to this cross-section corresponds to the Gauss map acting on the end point. For a more

formal discussion for the modular group (however, the same details apply here), see [20].
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