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Abstract

The goal of these notes is to answer the question: how long will it take a monkey to
type the word ABRACADABRA? The answer comes from an ingenious application
of the theory of Martingales and the optimal stopping theorem. The proof was shown
to me in my advisor, Bálint Tóth’s wonderful course on Martingales. I highly sug-
gest anyone interested in this subject look at the notes from that course https://

people.maths.bris.ac.uk/~mabat/MARTINGALE_THEORY_2016/ which are my pri-
mary source for the background. Another great source is the introductory book by
Grimmett and Stirzaker [GS20]. I will assume some basic probability and measure
theory, but will assume no prior knowledge of martingales.

The goal of this note is to answer the age-old question, “how long would it take a

monkey to type the word ABRACADABRA?” (well... commercial typewriters went to

market in 1873, so let’s say the 250 year old question). Now we may have to make some

simplifying assumptions. To help our monkey we will design a typewriter with 26 keys.

Moreover let us assume that typing (like most things) is something that monkeys excel at

when compared to humans. Thus, we assume they type 250 characters per minute and we

also assume monkeys type uniformly at random with no preference for characters. With

that, we have the following theorem

Theorem 1. Under the above assumptions, to type ABRACADABRA, a monkey will

take exactly 26 + 264 + 2611 = 3, 670, 344, 487, 444, 778 keystrokes. Or approximately

14, 681, 377, 949, 779 minutes or 27, 932, 606 years or 1, 034, 541 lifespans of the Japanese

Macaque.

Remark. If instead we wanted to type out all of Shakespeare, the answer is not that shock-

ing. One minute on the internet reveals there are 884, 421 words in all of Shakespeare’s 43

works. The average (modern) English word has 4.7 characters, and is followed by a space.

Thus the number of keystrokes is approximately 4, 156, 779. To be safe let’s give a range

of 3, 800, 000− 4, 400, 000. Note that we will forgive the monkey for omitting punctuation

although we will be very cruel and insist that Shakespeare’s work comes in one complete

block, in chronological order. Then working approximately it will take 263,800,000−264,400,000
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keystrokes. The lower order terms are absorbed in the approximation and the answer is

not that interesting.

The proof relies on martingale theory. The term martingale refers to a betting strategy

which is relatively simple: go to a roulette wheel and bet $1 on red. If you win, go home.

If you lose, bet $2 on red. If you win on your second try, go home with your extra dollar.

If you lose, bet $4 on red. Then keep going. If you win, go home, if you lose double

your bet and go again. As long as you have infinite money to sustain your bets, you are

guaranteed to win $1. The probabilistic concept was introduced by Lévy [Lév35] in 1935

and is frequently used to study gambling of all sorts. Martingales are tremendously useful

ways to understand ’fair games’. That is, games where the player’s expected fortune does

not change from move to move. For example, if you go to a casino and they offer you a $1

bet on a fair coin flip, then your fortune after n flips forms a martingale. Probabilists are

tremendously good at using this simple object to study a variety of unexpected problems.

1 Probability spaces and Martingales

Throughout, let

X := (Ω,F ,P)

be a probability space. That is, Ω is the set of all possible outcomes (sample space), F
is a σ-algebra on Ω (event space), and P : F → [0, 1] denotes the probability measure on

the space. A stochastic process is a sequence of random variables X0, X1, X2, . . . , jointly

defined on X.

A filtration of X is an increasing set sequence of sub σ-algebras

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F .

The point being that at time n, the σ-algebra contains all information available at time n.

Henceforth assume X = (Ω,F , {Fn},P) is a filtered probability space.

Example 1.1 Now considering our example, let us set Ω to be the sequence of infinite

words taken from our 26-letter alphabet (which we denote A := {a1, . . . , a26}), F = P (Ω)

the power set of Ω, and let P be the probability measure assigning equal probability to

each letter in the word. To construct a natural filtration, let Fi1,...,in denote the set of all

words in Ω whose jth letter is aij for j = 1, . . . n. One possible filtration is to set F0 to be

the trivial σ-algebra (i.e F0 = {∅,Ω)), when no information is known. Then

F1 = F0 ∪
26⋃
i=1

Fi
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Then F1 contains all information after the monkey has typed one letter. Following this

pattern, we set

Fn = Fn−1 ∪
⋃
i

Fi,

where the union is taken over vectors i ∈ {1, 2, . . . , 26}n.

Given a stochastic process {Xn}∞n=0 on X we say that a filtration {Fn}∞n=0 is adapted

to {Xn}∞n=0 if Xk is Fk measurable. In our example, let ϕn : Ω → R be a measurable

function which depends only on the first n entries of ω. Then the filtration we gave is

adapted to ϕn.

Given a filtered probability space (Ω,F , {Fn},P), a stochastic process {Xn} is a mar-

tingale if

i) The stochastic process {Xn} is adapted to the filtration Fn.

ii) The expectation E (|Xn|) <∞.

iii) For any time n ≥ 0 we have

E
(
Xn+1

∣∣ Fn

)
= Xn

almost surely.

The first two properties are natural technical conditions. The third property is the real

defining property of a martingale (known as the martingale property), it says that playing

another round of the game won’t affect the expectation of the stochastic process.

The original application of martingales (and the source of the name) is to fair betting

and illustrates the intuition fairly well. Suppose Alice and Bob are playing a game with

probability p that Alice wins and probability 1 − p Bob wins. Each time they play, Alice

places a 1 dollar bet. If Alice wins, she receive a 1/p dollar pay-out. This is a fair game

since on average neither Alice nor Bob has an advantage. Let Xn denote Alice’s fortune at

time n. Then Xn is a martingale since every time she plays her expected fortune should

be the same as before she has played.

2 Optimal Stopping

Given a filtered probability space (Ω,Fn, {Fn},P), a stopping time is a function T : Ω→
N = {0, 1, 2, . . . } ∪ {∞} such that for all n ∈ N we have

{ω : T (ω) ≤ n} ∈ Fn.
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In other words, at time n we can decide whether or not T has happened.

Returning to Example 1.1, if we write the word ω = ω1ω2ω3 . . . then an example of a

stopping time is

T (ω) = min(n ∈ N : ωn = a1).

That is, the first time the letter a1 appears in the word. This is a stopping time for

our filtration since, if one knows the first n letters, one can decide whether or not T has

happened.

An example of a function which is not a stopping time is

T (ω) = min(n ∈ N : ωn+1 = a1),

the first time the next letter is a1. This is not a stopping time for our filtration since it

requires us to peak into the future to decide whether it has happened at time n.

Given an adapted process {Xn} and a stopping time T we can define the so-called

stopped process {XT
n } to be

XT
n := min(Xn, XT ).

That is, we run Xn until T happens, then we stop. The nice thing about stopped processes

is that, if Xn is a martingale, then XT
n is a martingale (we leave this as an exercise). This

leads us to the following theorem, known as Doob’s optimal stopping theorem

Theorem 2 (Doob’s optimal stopping theorem [GS20]). Let (Ω,F , {Fn},P) be a filtered

probability space. Let {Xn} be a martingale, and let T be a stopping time with P(T <

∞) <∞. Then each of the following conditions alone imply the equality

E (XT ) = E (X0) . (2.1)

i) T is almost surely bounded (i.e P (T ≤ N) = 1 for some N <∞).

ii) The stopped martingale {XT
n } is almost surely bounded (i.e P

(
supn

∣∣XT
n

∣∣ ≤ K
)

for

some K <∞).

iii) The expectation E (T ) <∞ and there exists a K <∞ such that E
(
|Xn+1 −Xn|

∣∣ Fn

)
<

K almost surely.

We are rarely so lucky to be in the first two cases, but the third case is surprisingly

useful.
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3 Random Typing

Now that we have the definitions of martingales and stopping times, and the optimal stop-

ping theorem, we are ready to try and answer questions about randomly typed characters.

The challenge now is to set up an appropriate martingale and to exploit the optimal stop-

ping theorem. For this we start with a toy example:

3.1 Example 1: One heads from a coin toss

First, suppose a coin is tossed with probability p of getting heads, and 1−p of getting tails.

What is the expected number of tosses needed to get a head?

Formally our sample space Ω, will be set of infinite sequences of heads and tails, the

σ-algebra will be the power set and the probability measure is the coin toss probability

measure.

Now imagine a game: Bill will pay 1 dollar for each coin toss, if the coin comes up tails,

the house wins the dollar. If Bill wins he receives back 1/p dollars. To play this game the

house will need to start with 1/p− 1 dollars (otherwise they won’t be able to pay Bill his

winnings if he wins in the first toss). Let X0 = 1/p− 1 and let Xn denote the house’s cash

after the nth toss. Let T : ω → N the first time a heads is tossed.

We leave it as an exercise to show that Xn is a martingale, T is a stopping time, and

together they satisfy the conditions of the optimal stopping theorem. Thus

E (X0) = 1/p− 1 = E (XT )

= E (1/p− 1 + T − 1/p) .

where the last line comes from the fact that at step T Bill has paid T dollars to play and

if he wins on that toss he will receive 1/p dollars. Thus

E (T ) = 1/p.

It is worth noting that if we calculate this expectation explicitly we can prove a cute identity
∞∑
n=1

P (T = n) = p
∞∑
n=0

(1− p)n(n+ 1) = p
∞∑
n=0

n(1− p)n + p

∞∑
n=0

(1− p)n = 1/p.

Therefore
∞∑
n=0

n(1− p)n = 1/p2 + 1/p.

In general, one can arrive at some interesting series identities using martingales.
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Returning to our main aim, this tells us that the expected time for our monkey to type

the letter A is 1/26.

3.2 Example 2: Typing AB

Now returning to the typing example. The probability space and filtration will be the one

from Example 1.1. And the game will be similar: Regardless of the previous letter Bill will

bet 1 dollar that each letter is an A. If he wins he receives 26 dollars. If the nth letter is A,

then Bill will place an additional bet that the n+1th letter is B. The buy-in for this second

bet is 26 dollars, and the pay-out is 262 dollars. Again, let Xn denote the house’s cash at

time n. To play the game the house needs at least 262 − 2 dollars. So let X0 = 262 − 2 be

the house’s initial cash.

Now the stopping time, T will be the first time AB appears. Leaving the condition-

checking to the reader we again apply the optimal stopping theorem and find

262 − 2 = E (XT )

= E (T )− 2,

for the second line note that Bill has returned any money he has won up to this point, he

has bet T dollars, and has received the pay-out of 262. Thus E (T ) = 262 = 676.

3.3 Typing ABRACADABRA

Now to type ABRACADABRA. For this we follow the same strategy. Regardless of the

previous letter, Bill will bet 1 dollar that the next letter is A, with a payout of 26 dollars.

If the previous letter was an A he will additionally bet 26 dollars that the next letter is B,

with a possible pay-out of 272. If the previous two letters were AB he will bet 262 dollars

that the next letter is R with a pay-off of 263. And so forth until he finishes.

Again we let Xn denote the house’s net cash at time n. To get started the house will

need to account for the worst case scenario (Bill wins in the first instance). In this case

Bill wins three bets! One for the word ABRACADABRA, one for the word ABRA and

one for the word A. Thus his payout will be 26 + 264 + 2611 dollars, but he has put in 11

dollars of his own cash to bet each round. Thus we set X0 = 26 + 264 + 2611 − 11. Now

using optimal stopping we find that

E (X0) = 26 + 264 + 2611 − 11 = E (T )− 11.

Thus we find that E (T ) = 26 + 264 + 2611 = 3, 670, 344, 487, 444, 778.
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Now to find the time taken we assume that monkeys type 250 keystrokes per minute

giving 14, 681, 377, 949, 779 minutes, or 27, 932, 606 years, or 1, 034, 541 lifespans of the

Japanese Macaque.
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[Lév35] P. Lévy. Proprietés asymptotiques des sommes de variables aléatoires énchâınees.
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